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Abstract
Jasper Brown, BE (Hons 1) Doctor of Philosophy
The University of Sydney September 2021

Robotic Crop Interaction in Agriculture for Soft Fruit
Harvesting

Autonomous tree crop harvesting has been a seemingly attainable, but elusive, robotics
goal for the past several decades. Limiting grower reliance on uncertain seasonal
labour is an economic driver of this, but the ability of robotic systems to treat each
plant individually also has environmental benefits, such as reduced emissions and
fertiliser use. Over the same time period, effective grasping & manipulation (G&M)
solutions to warehouse product handling, and more general robotic interaction, have
been demonstrated.

Despite research progress in general robotic interaction and harvesting of some specific
crop types, a commercially successful robotic harvester has yet to be demonstrated.
Most crop varieties, including soft-skinned fruit, have not yet been addressed. Soft
fruit, such as plums, present problems for many of the techniques employed for their
more robust relatives and require special focus when developing autonomous har-
vesters. Adapting existing robotics tools and techniques to new fruit types, including
soft skinned varieties, is not well explored. This thesis aims to bridge that gap by
examining the challenges of autonomous crop interaction for the harvesting of soft
fruit.

Aspects which are known to be challenging include mixed obstacle planning with
both hard and soft obstacles present, poor outdoor sensing conditions, and the lack
of proven picking motion strategies. Positioning an actuator for harvesting requires
solving these problems and others specific to soft skinned fruit. Doing so effectively
means addressing these in the sensing, planning and actuation areas of a robotic
system. Such areas are also highly interdependent for grasping and manipulation
tasks, so solutions need to be developed at the system level.



Abstract ii

In this thesis, soft robotics actuators, with simplifying assumptions about hard ob-
stacle planes, are used to solve mixed obstacle planning. Persistent target tracking
and filtering is used to overcome challenging object detection conditions, while mul-
tiple stages of object detection are applied to refine these initial position estimates.
Several picking motions are developed and tested for plums, with varying degrees of
effectiveness. These various techniques are integrated into a prototype system which
is validated in lab testing and extensive field trials on a commercial plum crop.

Key contributions of this thesis include

I. The examination of grasping & manipulation tools, algorithms, techniques and
challenges for harvesting soft skinned fruit

II. Design, development and field-trial evaluation of a harvester prototype to vali-
date these concepts in practice, with specific design studies of the gripper type,
object detector architecture and picking motion for this

III. Investigation of specific G&M module improvements including:

• Application of the autocovariance least squares (ALS) method to noise co-
variance matrix estimation for visual servoing tasks, where both simulated
and real experiments demonstrated a 30% improvement in state estimation
error using this technique.
• Theory and experimentation showing that a single range measurement is

sufficient for disambiguating scene scale in monocular depth estimation for
some datasets.
• Preliminary investigations of stochastic object completion and sampling

for grasping, active perception for visual servoing based harvesting, and
multi-stage fruit localisation from RGB-Depth data.

Several field trials were carried out with the plum harvesting prototype. Testing on
an unmodified commercial plum crop, in all weather conditions, showed promising
results with a harvest success rate of 42%. While a significant gap between prototype
performance and commercial viability remains, the use of soft robotics with carefully
chosen sensing and planning approaches allows for robust grasping & manipulation
under challenging conditions, with both hard and soft obstacles.
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Chapter 1

Introduction

Global food demand is forecast to increase by 15% over the coming decade and meet-
ing this requirement while reducing environmental and climate impacts will require
technological and policy innovation, see OECD and Food and Agriculture Organiza-
tion of the United Nations (2019). Tree crop growers in Australia face these same
issues, with the added complication of a large seasonal labour force which is unreliable
and increasingly uneconomical to source, as documented by Martin et al. (2020).

Robotics provides significant opportunities for increasing productivity in horticulture
while reducing production inputs, and many of the most valuable agricultural appli-
cations require physical crop interaction. Robotic grasping & manipulation (G&M)
are difficult tasks which have been the focus of research for several decades and are
still under active development. Applying these techniques in agriculture is even more
challenging due to uncontrolled outdoor environments containing water, dust, and
variable lighting. Non-rigid, fragile and highly complex objects such as plants or
fruits make many traditional grasp planning tools ineffective and simulation of hor-
ticultural tasks very difficult.

Despite these challenges, many research and commercial groups are now working on
solutions for harvesting specific indoor or hard skinned, crop types such as apples,
sweet peppers, strawberries and cucumbers. Soft skinned tree crops are a valuable
market which present unique and largely unexplored challenges because the tech-
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niques, components and algorithms common in robotics literature have not been
developed for these and require adaptation. For example, the vacuum harvesters ap-
plied to apples rely on their robust skin to avoid damage, while strawberry trellis
systems are different to those of tree crops like plums. Understanding the process of
autonomous soft skinned tree crop harvesting is the goal of this thesis. It explores
the selection and adaptation of common robotics techniques to soft fruit harvest-
ing, within the context of a plum picking prototype. Each stage of the grasping &
manipulation pipeline is constructed with this goal in mind, then tested as part of
a week-long field trial, which is the first of its kind to target the harvesting of an
unmodified commercial plum crop.

Several stand-alone studies are conducted into specific theoretical and practical sys-
tem improvements. These cover stochastic shape completion from partial observations
of objects, monocular depth inference under ambiguous scale scenes, a thorough com-
parison of object detector architectures for eye-in-hand harvesting, improving filter
noise parameter estimates in visual servoing applications using the autocovariance
least squares method, and active perception techniques for bearings only fruit locali-
sation.

Key grasping & manipulation stages, and how each thesis chapter considers these,
are shown in Figure 1.1. The environmental representation (ER) is how sensor data
is stored in a coherent view of the world. Sensor processing is used to translate direct
input frames into fruit properties such as size and position which are stored in the
ER. This includes detection, pose estimation, and filtering. Grasp planning selects a
grasp motion and position, while control elements operate at multiple system scales
to regulate actuator and gripper motion. Manipulation follows the grasping step, for
harvesting, this includes the detachment motion and placement in a bin.

The thesis concludes with a field trial evaluation of the harvesting prototype platform
on a commercial plum crop. This platform consists of an articulated robot arm and
custom designed gripper, with two eye-on-hand cameras, which is fixed to a self
contained mobile trailer base. A localisation camera tracks the trailer position in the
orchard, which also has a basket for depositing harvested fruit into during the trial.
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Figure 1.1 – Overview of thesis chapters and the key grasping & manipulation points
in each.
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1.1 Thesis Objectives

Autonomous fruit harvesting requires a long and complex pipeline of functionality to
be successful. Within existing solutions, the focus tends to lie on improving individ-
ual components. Despite the success of specific algorithms and designs in research
contexts, deployment of grasping and manipulation systems in real world agriculture
tasks is very limited. Many of these system components come from the wider robotics
literature and are not well tested or optimised for fruit harvesting. Additionally to
the individual component performance, the interactions between these to magnify or
cancel out picking failures are not well understood.

This thesis will examine these interactions to better understand the process of au-
tonomous harvesting of soft fruit, in order to improve the real world performance of
grasping and manipulation in agriculture. The design decisions when constructing a
prototype plum harvester will be assessed and improvements to key modules in the
G&M pipeline will be made.

The specific objectives of this thesis are to

• Critically assess the design decisions made with regard to the entire grasping and
manipulation pipeline including both the performance of individual components
and the relationships between these at a system level, in order to best support
soft fruit harvesting

• Present experimental results for the prototype robotic plum harvesting system
and each component of this to allow for future progress in harvesting less com-
mon crop types

• Develop and test improvements to specific key components to improve the per-
formance of robotics technology within harvesting and crop interaction

• Provide an illustrative example of a modern grasping and manipulation pipeline
within robotic agriculture, using current algorithms and techniques from the
perception, planning and grasping robotics literature
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1.2 Contributions

The main contribution of this thesis is an investigation of techniques and tools for
autonomous soft fruit harvesting, with an experimental validation of these on a novel
plum picking prototype. Both rigid and soft gripper designs are explored for plum
harvesting, along with simple and complex types of picking motion. Lessons around
soft robotics components, mixed obstacle planning, target filtering, active perception
for harvesting and picking motion are identified, which may also be applied to other
less common tree crop types.

Additionally, several stand-alone studies of theoretical and practical improvements to
key grasping and manipulation pipeline components are conducted, including:

• Improvements to extended Kalman filter (EKF) and moving horizon estimation
(MHE) filter tuning for visual servoing tasks. This allows more accurate filters
to be used for fruit localisation.

• A new dataset, benchmarked models and improvements to object detection for
camera-in-hand plum harvesting tasks. This allows for better plum detection
under all environmental conditions.

• A new approach to predicting depth maps from monocular imagery. This makes
the use of this technique possible for ambiguous scenes, which are frequently
present in agriculture.

• A new approach to sampling stochastic object representations for grasping when
predicting obscured parts of objects. This allows for scene completion with lim-
ited sensor data and performs the highest quality grasp given uncertain envi-
ronment parameters.

• Additional investigations of active perception for fruit localisation using bear-
ings only camera measurements
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1.3 Thesis Structure

Chapter 2 provides a brief background of historical and modern robotic grasping
theory along with reviews of current literature on each of the system components.
Existing approaches to autonomous fruit harvesting are examined.

Chapter 3 covers environmental representations and sensor selection for harvesting.
Stochastic shape completion for grasping is studied, along with one method for im-
proving depth estimation from monocular imagery in ambiguous scenes by fusing a
single range measurement.

Chapter 4 focuses on the fruit localisation process which interprets raw sensor data
and incorporates this in the environmental representation. This includes steps of
object detection, pose estimation and filtering. Object detection was found to be
problematic, so several modern deep learning models are benchmarked against a new
harvesting oriented object detection dataset. Specific improvements to estimating
the filter noise covariance matrices, using the autocovariance least squares (ALS)
approach for position based visual servoing (PBVS) are presented. A reduced value
iteration active perception framework is applied to determine the efficacy of bearings-
only fruit localisation.

Chapter 5 covers issues specific to grasp execution in plum crops. The problem of
harvesting in the presence of mixed hard and soft obstacles is addressed here. Various
methods, factors and solutions to this are examined, including; the design of both a
hard and soft gripper, the selection and control of an actuation system to position
these grippers and the choice of picking motion. Two final approach controllers are
also presented.

Chapter 6 describes the overall architecture and implementation of the developed
plum harvesting prototype system, along with key trellis parameters. Field trial
experiment design and results are included, with overall performance figures and a
failure mode analysis. Finally, Chapter 7 is the conclusion and future work direc-
tions.



Chapter 2

Background & Literature Review

In this chapter, the concepts of grasping and manipulation are defined, and both
historical and modern research in these areas is briefly summarised. Publications
targeting autonomous fruit harvesting are examined, followed by literature review
sections specific to the detailed component studies presented in this thesis.

2.1 A Background on Grasping and Manipulation

Grasping and manipulation have been desired functionality in robotics for several
decades, although applications of these outside repetitive factory settings remain
elusive. Likewise, the concept of autonomous farming has been common long before
the technology to realise it was developed. These two areas intersect in the problem
of autonomous crop interaction, including such tasks as tree crop flower thinning,
pruning and general weeding. Robotic harvesting is the interaction task that this
thesis focuses upon.

The term grasping will be used in reference to the process of placing an end effector in
a configuration which allows an object to be held in a static pose relative to that end
effector. This is typically accomplished by physically closing end effector components,
such as fingers, around the object, but can also apply to vacuum, magnetic or other
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gripper types. Manipulation is physical interaction to alter or utilise an object for a
specific purpose.

An illustrative example common in robotics competitions is turning a valve. This
requires planning a grasp, positioning for the planned grasp by placing the robot
hand over the valve handle, then closing the robot hand to grasp the handle. These
three steps are grasping, with the added intent to rotate the valve. Turning the
valve is manipulation. Most manipulation actions require a grasping step, though
approaches such as pushing may not.

In the context of fruit harvesting, placing the gripper in contact with a fruit is grasp-
ing. While removing that fruit from the stem and placing it in a collector is manipu-
lation. These two phases are closely coupled, but have distinct requirements, so both
terms will generally be used together.

Grasping theory spans a wide range of approaches, algorithms and hardware. One
cohesive framework for thinking about these disparate areas is by considering grasping
as a problem of state space parameterisation and search. Grasp planning is typically
the core problem to be solved, being more difficult than grasp execution. This consists
of determining values for an end effector pose parameterisation, that are optimal in
some sense, given uncertainties about the environment. The relevant search space
is the end effector configuration, which may be parameterised by every end-effector
joint, only fully actuated joints, or a subset of these. It is also common to plan in
low-dimensional parameter spaces, such as the 6 degree of freedom (DoF) pose of the
palm or gripper centroid, and then execute an open loop gripper closing action.

Given a selected parameterisation the configuration space must be searched for a
maximum value of the optimality criteria. One basic, but widely used, technique is
to perform a sampling based search while executing a physics simulation at each con-
figuration to predict the resulting grasp stability. A recently demonstrated paradigm
is to parameterise grasps directly in sensor data space, such as over a top-down depth
map, and densely search this reduced space.

Which optimality criteria to use is another rich area of research, common ones include
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maximising the probability of success, minimising the probability of grasp failure
under uncertainties, or maximising informativeness for future grasps. Environment
uncertainty often covers object properties such as geometry, friction coefficients, mass,
or pose. It also extends to robot state and obstacle uncertainties.

2.2 Historical and Modern Grasping Literature

Early work in grasping theory by Mason and Salisbury (1985) considers the 2D case
and describes the complimentary conditions of form and force closure, illustrated in
Figure 2.1. Both of these build on the concept of a wrench vector, which is the
force and moment able to be applied by a given contact between a hand and object.
With the goal of immobilising an object using applied wrenches, form closure is when
contacts are modelled as frictionless points. This is equivalent to the configuration
point of the object being surrounded by c-obstacles in configuration space, as used
in Rimon and Burdick (1996). Force closure allows frictional properties for the applied
wrenches, and occurs when the convex hull of wrenches in the wrench space includes
the origin.

Figure 2.1 – An example of force (left) and form (right) closure grasps. Top down
view of a blue cylinder moving only in the XY plane is shown, with normal forces
depicted using red arrows and 2D friction cones using red shading. The form
closure grasp can immobilise the object position in the absence of friction.

These two conditions of immobility are closely tied to grasp quality metrics. Ferrari
and Canny (1992) propose their eponymous measure of the minimum distance from
the origin to the convex hull of the wrench space for a given grasp configuration. This
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is the minimum wrench required to dislodge an object from a grasp. Other quality
metrics are assessed by Roa and Suárez (2015).

Matching the task goal to a suitable disturbance wrench space is considered in Borst
et al. (2004), who observed that non-uniformity between the force and torque dimen-
sions of a wrench limits the application of quality metrics. For unknown tasks, the
disturbance wrench space should still be made robust to gravity and object accelera-
tion wrenches due to arm movement.

Many animals, humans included, are highly adept at grasping, so numerous works
have sought to apply lessons from nature to grasping theory. Napier (1956) cata-
logues a series of prehensile movements for human hands when manipulating objects.
Cutkosky and Howe (1990) extend this to a formal taxonomy of human grasps, which
are divided into power and precision types. By considering analytical and knowledge-
based approaches together, they are able to draw insights into why certain grasps are
more appropriate for some objects or tasks. Practical approaches to grasp planning,
as reviewed in Bicchi and Kumar (2000), rarely search over the full parameterisation
space of a complex gripper. Some parameterise the grasp by the 6 DoF pose of the
palm, then automatically close the joints to achieve a grasp. Ciocarlie et al. (2007)
use human generated pregrasp poses with principal component analysis to define a
low-dimensional basis for planning dexterous hand grasps, then search for good con-
figurations within this eigengrasp space. Searching for grasps in reduced parameter
space may be relevant to fruit harvesting, where repetitive motions and consistent
target shapes are likely to result in repetitive grasps. This can reduce both actua-
tor degree of freedom requirements, and planning time. As mentioned below, fruit
picking motions and possible subspaces of these, remain open research questions.

Recent works have effectively applied machine learning tools to densely predict reward
maps over top-down view depth images, such as the reactive approach of Morrison
et al. (2018). Online reinforcement learning with large amounts of data is tested
by Levine et al. (2018) to learn grasping policies from scratch. Kleeberger et al. (2020)
provide a review of this field. Both online and offline learning of motion policies is
very data intensive, which makes this technique difficult to employ in harvesting.
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Recovery from obstacle collisions or trellis entanglement frequently requires human
intervention, limiting the deployment of online learning systems without expensive
human supervision.

A large amount of grasping literature is omitted from this section for brevity, including
such techniques as adaptive grippers, tactile feedback, multimodal sensing for clear
or reflective objects, human controlled teleoperation, learning in-hand manipulation
and Bayesian grasp planning.

2.3 Robotic Tree Crop Harvesting

Robotic harvesting of tree crops has a long history with published works going back
over 30 years and over 50 papers on the topic, many being recent works, such as Bac
et al. (2014); Comba et al. (2010); De-An et al. (2011). Davidson et al. (2020) provides
an recent review of this area. The diverse and challenging conditions encountered in
agriculture mean that even this significant research effort covers only a small number
of crop types, and to a low rate of success. Commercialisation aspects such as system
speed, maintenance requirements, and cost of manufacture are often unaddressed by
the research literature.

Protected growing conditions offer lighting regularity, higher value crops and tightly
controlled growing structures making these attractive initial targets for autonomous
harvesting, as in van Henten et al. (2013). Arad et al. (2020) present a sweet pepper
platform, and Xiong et al. (2019) one for strawberries. Cucumbers and cherries are the
focus of van Henten et al. (2002) and Tanigaki et al. (2008) respectively. Common to
all of these crops are soft and flexible stems which result in collisions causing damage
to plants, but not interrupting or damaging the robotic system. Outdoor tree crops
in contrast, have hard lignified branches which easily harm harvester components.

One of the first demonstrations of an outdoor tree crop harvester is seen in Baeten
et al. (2008) which targets apples using a suction gripper and eye-in-hand sensing.
A more recent apple harvester is presented by Silwal et al. (2017) using a low cost
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3D printed gripper and a custom built prismatic base manipulator arm executing
rotational picking motion. They report system performance on a modified crop,
making realistic picking success rate assessment difficult. Positioning error is one
problem highlighted in this work, along with longer apple stems acting as pendulums
during picking.

Moving from hard to soft fruit types introduces additional complexity which is not
well understood at present. Defining a line between hard and soft fruit is challenging,
and large variations also occur between plum cultivars, as shown in Esehagh Beygi
et al. (2014), but plums typically have lower skin toughness than crops such as ap-
ples and pears. The soft skin is easily damaged by contact with hard tree wood or
trellis components during picking, while stem pull out occurs at lower forces. Both
conditions make the fruit unsaleable due to bacterial ingress through the broken skin.

Plums are chosen as a representative and informative soft fruit type for both intrinsic
and extrinsic reasons. They are an informative choice because little work has been
done on automated or mechanised harvesting of these, and the lower skin toughness
introduces complexities not seen in fruit such as pears or citrus. Extrinsically, plums
were available to us with the correct fruiting wall trellis type during the planned
field trial timeline of this work, with a supportive grower providing access for field
experiments. System integration tests did take place on apple crops, due to ease of
access.

Mechanised plum harvesting is examined in Mika et al. (2015), who reported that
up to 18% of harvested plums were damaged and an additional small amount were
dropped or missed. This rate of damage is acceptable where cold storage is employed
and fruit are destined for further processing into jams and or baking products. Table
fruit require more delicate handling to prevent damaging the soft skin on hard tree
wood or trellis components, requirements that cannot be fulfilled by mechanised bulk
harvesters.

Soft robotics techniques are one approach to dealing with positioning errors and
collisions. This field considers the use of compliant or biologically inspired sensors,
actuators, and embodiments, as described by Verl et al. (2015). The apple harvester



2.3 Robotic Tree Crop Harvesting 13

of Silwal et al. (2017) is further developed in Hohimer et al. (2019) including the
addition of a soft pneumatic gripper and further testing on unmodified crops. Two
learned feature detectors are used in an ensemble for fruit detection, with multiple
camera exposures taken to increase dynamic range under outdoor lighting. Picking
motion is also examined, with off-horizontal pitch angles found to increase collisions
without improving picking success. This study determined fruit clustering to be the
most prevalent failure case, with positioning error also remaining a problem.

Numerous commercial entities are bringing product prototypes to market at the time
of writing, although none have exited the development phase. Target crop types
include strawberries (Agrobot1, Octinion2, CROO Robotics3), raspberries (fieldwork
robotics4), tomatoes (Panasonic5) and apples (Abundant Robotics6, FFRobotics7).
The narrow focus of these to specific crop types and growing systems means au-
tonomous harvesting of lower volume fruit varieties will be an open research problem
for some time.

Individual fruit harvesting requires robust object detection. Research has focused on
both hand-engineered detection features, and learned features, as in Kapach et al.
(2012); Nguyen et al. (2014); Sa et al. (2017); Vitzrabin and Edan (2016) and Bargoti
and Underwood (2017a). Object detection for eye-in-hand imagery gathered during
harvesting attempts remains an unexplored topic. Further review of this area is
presented in Section 2.4.3.

Gripper design is both critical to grasping performance and task specific. Along with
the pneumatic gripper of Hohimer et al. (2019), an under-actuated cable driven hand
is shown in Xiong et al. (2019). Tactile feedback can be used to inform grasp success
as in Dimeas et al. (2015). Certain fruit have additional requirements, such as cutting
the stem of sweet peppers, as demonstrated by Bac et al. (2017) and Lehnert et al.

1agrobot.com. Accessed on 27/4/2020
2octinion.com/products/agricultural-robotics/rubion. Accessed on 28/4/2020
3harvestcroo.com. Accessed on 28/4/2020
4phys.org/news/2019-05-fieldwork-robotics-field-trials-raspberry.html. Accessed on 28/4/2020
5news.panasonic.com/global/stories/2018/57801.html. Accessed on 28/4/2020
6abundantrobotics.com. Accessed on 28/4/2020
7ffrobotics.com. Accessed on 28/4/2020
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(2017). No existing literature reports the performance of rigid or soft gripper designs
for a commercial plum crop, so effective hardware designs for these remain to be
determined.

Final target approach is done using image based visual servoing (IBVS) in Barth
et al. (2016); Mehta et al. (2016) and Arad et al. (2020). A review of vision based
harvesting control can be found in Zhao et al. (2016). Infrared distance sensing is
applied for motion feedback by Xiong et al. (2019). Multiple approach angle strategies
are tested by Ringdahl et al. (2019), who found additional attempts did increase sweet
pepper harvest success rate at the cost of longer execution time. A study of orchard
fruit reachability is carried out by Vougioukas et al. (2016) with over 90% of targets
reachable using only linear motion. Several apple picking motions are trialled by Li
et al. (2016), with some producing significantly higher rates of fruit damage. Xiong
et al. (2020) use push and drag motions to separate obstacles from target strawberries
when harvesting. Approach and picking motions may, or may not, translate well
from other fruit types to plums. Both the similarity in picking performance between
fruit for a given motion, and effective picking motions for plums, remain unanswered
questions.

Many types of environmental representation have been used for fruit harvesting,
though often these result from other design decisions, rather than being explicitly
chosen. Depth information aligned to images is used by Arad et al. (2020) to extract
fruit positions as invididual points. They also employ ROS MoveIt! which uses a
mesh representation internally. Silwal et al. (2017) likewise combine depth informa-
tion with imagery, but use a point cloud intermediate representation to encode depth.
Circle primitives are applied via a Hough transform to represent fruit in 2D image
space.

2.4 Detailed Component Studies

Within this thesis a series of component studies are carried out to better explore
specific system improvements. These are written as largely self contained sections so
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they may be read, or skipped, as desired. In this section literature reviews specific to
these studies are presented.

2.4.1 Shape Completion for Stochastic Voxel Grids

Incomplete sensor data is a common challenge for robotic grasping, and one which
is clearly present for partially obscured trellis obstacles or branches. Object shape
completion uses limited geometric knowledge to estimate obscured portions of grasp-
ing targets, as in Varley et al. (2017) and Bohg et al. (2011). Many approaches to
shape completion exist, such as library matching in Goldfeder et al. (2009); Ren-
nie et al. (2015), object symmetry identification in Bohg et al. (2011); Quispe et al.
(2015); Rock et al. (2015), and fitting of parametric primitives like superquadrics as
in Vezzani et al. (2017).

These techniques only apply to known or simple object structures. Parametric prim-
itive fitting works well for round fruit, but will fail for more general objects such as
plants or farm tools. Deep learning based methods can infer complex shapes and
leverage parallel computation for fast results. Work by Wu et al. (2015), applies a
deep belief network to simultaneously predict the class, next best view, and completed
geometry of an object. Varley et al. (2017) uses a combination of 3D convolutional
and two dense reconstruction layers to predict unseen object portions. The input and
output of this network are equally sized 3D voxel grids. To perform grasp planning
the binarised output grid is converted to a point cloud, upsampled, merged with the
input and undergoes a gap removal process followed by marching cubes to transform
it into a collision mesh. Choy et al. (2016) take a similar approach but use a long
short-term memory (LSTM) layer to fuse multiple viewpoints.

Deep networks can provide accurate statistical representations of their output confi-
dence, traditionally this has been the focus of Bayesian neural networks, as in Mackay
(1992). These take the same form as standard neural networks of arbitrary depth but
place a distribution, typically Gaussian, over each weight. As shown in Williams
(1996), a Bayesian neural network with an infinite number of hidden units is equiva-
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lent to a Gaussian process (GP), thus predictive uncertainty can be easily extracted
from these networks. One drawback is the additional training complexity required
to apply Bayes’ rule over the entire weights and biases space, typically computed
using Markov chain monte carlo (MCMC) or variational inference, see Andrieu et al.
(2003). Recently, Gal and Ghahramani (2016) have shown that model uncertainty can
be accurately and efficiently approximated using multiple stochastic forward passes
through a standard neural network. The stochastic element is introduced with a
stochastic regularisation technique (SRT), typically through dropout layers which
are also active at inference time.

Preserving accurate uncertainty estimates for object geometry reconstructions will
benefit grasp performance. Many techniques to exploit this uncertainty have been
proposed. Dragiev et al. (2013) propose a control law which allows a grasp planner to
be biased towards known or unknown regions, leading to an exploration or exploitation
style grasp. Another approach is to marginalise the grasp success probability over
the posterior distributions of the object representations, grasp success predictors and
execution errors, as in Hsiao et al. (2011). They present a fully probabilistic approach
which allows the best grasp, given the known uncertainties, to be executed. Although
they propose this method for all object representations, the implementation is only
explored for database matching reconstruction over a small number of discrete object
classes, and for partial point clouds.

This approach of marginalisation over possible object reconstructions is used in the
component study of Section 3.2, where each object possibility is sampled from the
shape completion network of Varley et al. (2017) using the SRT approach of Gal and
Ghahramani (2016). This technique is trained and tested on an existing 3D dataset
of objects, but for fruit harvesting, could be applied to predict the stem location when
obscured by leaves or branches. Very similar theoretical work to what is presented in
Section 3.2 was later simultaneously investigated by Lundell et al. (2019) who reached
equivalent conclusions.
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2.4.2 Monocular Depth Inference in Ambiguous Scenes

An extended literature review for this study can be found in Brown and Sukkarieh
(2019). Depth maps are commonly used in robotics for their ability to easily encode
and visualise large amounts of geometric information. Inexpensive commercial stereo
vision sensors, such as the Intel Realsense and Microsoft Azure Kinect ranges, can be
used to generate these, but the texture and lighting assumptions required for these to
work effectively are often not met in agricultural environments. For harvesting, the
minimum range and physical size of these commercial systems limits their suitability
for eye-on-hand sensing. Other methods of estimating 3D geometry, such as time
of flight and structure from motion, suffer from similar issues, as reviewed by Blais
(2004). Lidar and radar can generate high quality 3D data, but remain too expensive
for many agricultural robotics applications.

Direct estimation of a depth map from a single monocular image frame can alleviate
these issues, but this is a challenging problem that has only recently seen effective
general solutions through the use of deep learning methods, as in Eigen et al. (2014);
Laina et al. (2016); Xu et al. (2018); Zhao et al. (2020). If accurate, this technique
would allow inexpensive, compact, and robust monocular red-green-blue (RGB) cam-
eras to be used for depth map generation. However, monocular depth estimation is
an ill-posed problem when using the pinhole camera model, with multiple physical
scenes able to produce identical RGB images, as highlighted in Ladicky et al. (2014).

Two common forms of ambiguity that occur in the pinhole model are scene scale and
focal length uncertainty. Suwajanakorn et al. (2015) use multiple frames with a sweep
of focal lengths to estimate depth, aperture and true focal length. He et al. (2018)
directly feed the focal length to the middle layers of a depth prediction network, with
good results on simulated variable focal length images. Work by Ladicky et al. (2014)
addresses class bias using a canonical fixed depth plane with dense semantic class
pixel segmentation. Assumptions around the object scales for semantically learned
classes mean this technique does not address scale ambiguity.

Works such as Ma and Karaman (2018) and Liao et al. (2017) fuse true depth mea-
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surements to improve depth map estimation, which also has the effect of eliminating
scale uncertainty. Results from the former indicate improved performance over the
RGB sensor case only occurs when more than 10 depth samples are used, while the
latter requires a lidar sensor for base map generation which is refined by RGB data.

2.4.3 Fruit Detection for Harvesting

Fruit detection is a key problem that is common in the literature for goals such as
yield estimation, crop health assessment, and harvesting, as used in Bargoti and
Underwood (2017a,b); Fernández et al. (2018); Gongal et al. (2015); Koirala et al.
(2019); Sa et al. (2017) and Stein et al. (2016). The most basic form consists of
placing bounding boxes around each of the fruit in an image. Traditional computer
vision methods have been extensively employed, while many recent works make use
of deep learning tools. These require large amounts of training data, although this
requirement can be relaxed using data augmentation and simulation methods, or
transfer learning techniques.

Specular reflections from round fruit, combined with local image gradients, are used
in Wang et al. (2013) for object detection under controlled lighting. A support vector
machine (SVM) is trained to detect apples using thermal imagery in Feng et al.
(2019). The accuracy performance of SVM object detectors has now been surpassed
by deep learning approaches, though they remain competitive for classification when
using low dimensional hand-engineered image features, as in Kamilaris and Prenafeta-
Boldú (2018). Edge features are used with Hough voting and an SVM classifier
by Sengupta and Lee (2014) to identify green citrus fruit under varying illumination.
Similarly, Maldonado and Barbosa (2016) make use of a bas-relief representation
with edges, Hough voting and an SVM to also count green citrus fruit. Nguyen et al.
(2016) perform RGB and depth channel thresholding to identify point cloud blobs
corresponding to apples. These are separated using a Euclidean distance metric which
is tested in the field under semi-controlled lighting conditions.

Harvesting-oriented apple detection data is gathered in Kang and Chen (2020). The
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YoloV3, Mask-RCNN and Faster-RCNN architectures are thoroughly tested, along
with their own deep learning model, described in Kang and Chen (2019). This im-
plements the idea of focal loss, similar to RetinaNet. Unfortunately the dataset and
trained models are not released for comparison and, unlike the study in Section 4.1,
the harvesting system does not use an eye-in-hand camera. Gao et al. (2020) train a
multi class Faster-RCNN detector to distinguish between different obscuration cases
for apples, including those behind branches or wires, so that they can be harvested
appropriately.

Gené-Mola et al. (2019) examines apple detection using Faster-RCNN with image,
depth, and radiometric data. This multi-modal data was gathered using a robotic
platform at a fixed distance from the trellis and results indicated that early depth
fusion alone was not effective, but combining image, intensity, and range produced
the best detector.

Various sensing modalities for fruit detection, such as hyper-spectral, thermal, and
stereo vision are explored in Kapach et al. (2012). Thermal imagery is found to
only be useful at certain times of day, while geometry and colour are identified as
the strongest features for distinguishing fruit. Similar observations regarding the
limitations of thermal imagery use are made in Bulanon et al. (2009), and by Gan
et al. (2018) who also present a novel algorithm for fusing thermal and RGB imagery.

Depth data is frequently leveraged for object detection, as in Tu et al. (2020) where
a multiscale implementation of Faster-RCNN is improved with the late fusion of red-
green-blue-depth (RGBD) imagery. A Microsoft Kinect V2 camera is used, which
requires avoiding direct sunlight and is kept a fixed distance from the fruit trellis. This
provides detailed and consistent depth data, intended to be used for fruit counting
rather than harvesting. Lidar sensors have large depth ranges and very high accuracy,
but low resolution. Gené-Mola et al. (2020) leverage the lighting invariance of Lidar
to detect fruit in point clouds, captured with and without a commercial air blower
being applied to the crop. Combining data both with and without the blower active,
led to improved single frame detector accuracy, though it was not beneficial for yield
prediction. Late fusion of near infra red and RGB imagery is used to detect a range
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of fruit using Faster-RCNN in Sa et al. (2016) and dataset size is found to have a
critical impact on detector performance.

A wide range of detectors have been benchmarked on well known computer vision
datasets, and many have been individually tested on fruit detection. However, test-
ing and comparison of multiple current generation object detectors on a single fruit
detection dataset is lacking. Also unexplored is their performance on eye-in-hand
images gathered during the actual harvesting process. The study in Section 4.2 seeks
to address these questions.

2.4.4 Improving Visual Servoing Using Autocovariance Least
Squares

Data filtering methods, such as extended Kalman filtering, are used throughout this
thesis and visual servoing is one application of these. To improve filter performance
for visual servoing, a study of a noise covariance matrix tuning method is presented in
Section 4.4. Improvements presented in this study could allow for more accurate fruit
localisation and better motion control during visual servoing. Visual servoing control
and autocovariance least squares (ALS) are complex and widely studied topics, for a
more in depth literature review of these, the reader is referred to Brown et al. (2020)
and Brown et al. (2019).

Visual servoing is comprised of image based visual servoing (IBVS) which occurs in
image space, and position based visual servoing (PBVS) in cartesian space, along with
combinations of these. Both forms are commonly applied to both robotic manipu-
lation, as reviewed in Corke (1993), and agricultural robotics. For this component
study, PBVS is applied to estimate camera pose using a known object position, the
converse problem is also common.

Extended Kalman filtering is one iterative estimation technique commonly used for
PBVS due to its speed and simplicity. The EKF is optimal for linear systems with
Gaussian noise, which is a standard simplifying approximation of camera motion.
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However, more complex estimators such as full information estimation (FIE), of which
the EKF is a one step case, will perform better for non-linear systems. Rao et al.
(2001) explore the constrained version of MHE, a windowed approach to managing
the data complexity of FIE. Other recent works by Kong and Sukkarieh (2018a,b);
Wallace et al. (2019b) and Wallace et al. (2019a) also address the estimation of model
noise parameters and structures for MHE in robotics.

When applying the EKF framework, noise covariance (NC) matrix estimation is a key
parameter selection step. Robotics applications often overlook rigorous NC estima-
tion in favour of heuristics or experimentally determined stable values. As presented
in Odelson et al. (2006) and further developed in Ge and Kerrigan (2017), the ALS
method provides an efficient means of estimating these NC matrices. Unlike the tra-
ditional approach of Mehra (1970), ALS provides lower NC estimate variance while
guaranteeing unique results and is easily solvable as a convex semidefinite program-
ming optimisation problem. This latter property also allows for constraints in noise
structure and positive semidefiniteness to be efficiently imposed, unlike existing PBVS
solutions with adaptive noise estimation, such as Janabi-Sharifi and Marey (2010)
and Lippiello et al. (2007). Approaches to NC estimation, as reviewed in Duník et al.
(2017), also include Bayesian, covariance matching and maximum likelihood, though
these are typically less efficient to solve than correlation methods such as ALS.

This study uses a constant velocity linear time invariant (LTI) motion model, as
in Wilson et al. (1996) and Assa and Janabi-Sharifi (2015). Such a model can
well capture camera motion for small intervals, while being efficient to calculate.
Employing the pinhole camera model for the observation function results in a linear
time variant (LTV) output matrix and NC matrices are assumed to be constant.

2.4.5 Active Perception For Harvesting

Active perception (AP) has been widely explored in robotics, including within agri-
culture and for harvesting. The general active perception (AP) paradigm consists
of planning perception actions to maximise relevant gathered information, using in-
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puts from previous perception actions. The active perception component study in
Section 4.5 considers the problem of bearings-only fruit localisation, given monocular
detections from multiple viewpoints.

Multi-view camera positioning for sweet pepper detection is explored in Hemming
et al. (2014); Kurtser and Edan (2018a). The latter reported improved detectability
from 50% to 90% for multiple viewpoints, indicating the potential information gains
by intelligently selecting viewpoints. A Dirichlet mixture of Gaussian processes is used
by Ramon Soria et al. (2018) with Gibbs-Sampling to segment apple clusters. This
approach also provides stochastic shape reconstruction for obscured fruit portions.

Harvesting operations using eye-on-hand sensing must consider not just information
gain, but also path constraints, such that the gripper finishes at the fruit position
ready for picking. Kurtser and Edan (2018b) use an additional economic-cost value
function to determine when extra viewpoints are beneficial. None of the above works
perform online reactive path adjustment to maximise positional information.

Most relevant to the current study is the work by Mehta et al. (2017) who apply several
monocular cameras to a particle filter for 3D fruit localisation. This incorporates a
nonlinear motion model and stochastic sensing noise. Cooperative sensing using both
a fixed and on-arm camera is used by Mehta and Burks (2014) for citrus harvesting.
Controller stability is guaranteed, but experimental accuracy on an artificial tree
setup is only sufficient for larger fruit types.

Matching grasp planning tolerances to sensing uncertainty is a simple concept which is
often done implicitly in grasp planning systems, but the inverse problem of adapting
sensing to suit grasp tolerance is less commonly considered. A gap exists in the
literature concerning the application of active perception using a grasp tolerance
weighted goal function. Active perception tools allow explicit online optimisation to
be applied to this problem. The converse problem of matching gripper tolerance to
sensing inaccuracies is explored by Eizicovits et al. (2016), where simulation tools
are applied to generate grasp precision maps for two deformable-finger end effectors.
Eizicovits and Berman (2014) draw links between grasp affordance density maps and
sensing accuracy, but do not consider active sensor control based on these.



Chapter 3

Environment Representations &
Sensing

Which environmental representation (ER) to use is an important choice when con-
structing a grasping and manipulation solution. It will inform the sensing type chosen,
how grasps are parameterised and planned, plus the forms of useful information avail-
able for other tasks like fruit counting. This makes it the first major design choice
when constructing the G&M pipeline. To determine an appropriate ER for plum
harvesting, several are assessed along with possible sensing modalities.

3.1 Environmental Representations

An environmental representation is the mathematical and conceptual model for how
sensor information is processed and stored by the system into a useful model of
the world. Appropriate ERs are often dictated by the task, and narrow task defi-
nitions can benefit from highly specific ERs. A representation for harvesting must
capture the fruit locations, obstacles and general trellis position. Considered ERs
include Gaussian process implicit surfaces (GPISs), signed distance fields (SDFs) or
truncated signed distance fields (TSDFs), meshes, voxel grids or octrees, and geomet-
ric primitives.
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These have very different strengths and weaknesses. In any representation there is
generally a trade-off between compactness and expressiveness. Other considerations
include the ease of visualisation, how efficiently sensor data can be processed into an
ER update step, and whether a variable or fixed resolution is used.

The representations below were not considered for the reasons listed beside them . . .

• Point Cloud. These are often used in systems with lidar input. The variable
resolution and sparse nature of point clouds makes them difficult to use with
algorithms that expect a fixed input data size, such as many deep learning ar-
chitectures. Nor are they as memory efficient as more abstract representations.

• Library Indexed Objects. A large library of objects can be constructed offline
and a representation built by registering sensor data to library objects and
estimating their pose. Agricultural scenes present a near infinite variety of
objects with subtle variations, making a library based representation inefficient
or impossible.

• Depth Map. These are used as an intermediate step in the ER but are processed
into more abstract representations which are easier to work with. Previous
work by Morrison et al. (2018) has shown that grasps can be efficiently planned
directly on depth maps for top-down picking tasks with high quality depth data.

• Multi-view Maps. Multiple maps of any modality can be combined to provide
additional dimensions of representation, such as depth maps from each side of
an object. As depth maps are processed into more abstract representations, it is
beneficial to fuse multiple views after this step, rather than storing each depth
map directly.

• Superquadrics. These are an extension of geometric primitives which allow for
modelling of a wider class of shapes. Superquadrics are often combined to build
composite object representations made up of multiple primitives. These also
possess many of the memory and processing efficiencies of geometric primitives.
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Target fruit are easily modelled by regular spheres, and superquadrics are not
well suited to modelling branches, leaves or trellis structures, so are not used.

In many cases, the use of rich but difficult to work with representations, such as direct
point clouds, is required to employ data-driven methods such as machine learning.
This is less beneficial when the perception and planning stages can be separated, as
in the presented harvester architecture.

An implicit surface is an object representation constructed using a shape with dimen-
sionality one higher than the object. The object surface is then given by a level set of
this surface. GPISs extend this concept by using a Gaussian process (GP) function to
learn the higher dimensional shape. This allows Bayesian uncertainty to be properly
captured, while elegantly handling unobserved object regions. GPISs are constructed
using a continuous kernel function, which limits their ability to capture sharp object
features and can induce ringing around edges, as seen near the bottom of the raised
section in the Figure 3.1 middle plot.

Figure 3.1 – An example of modelling a 2D square using a 3D GPIS. The left plot
shows simulated data with value 1 for points inside a square and 0 for those outside,
plus additive noise. The middle plot shows results from a GP fitted to the data
and used to predict the z value for each point, points above a threshold of 0.5 are
circled red. The right plot shows the same GP function from the top down, regions
above 0.5 in height are shaded red.

To generate Figure 3.1 a GP regression function is fit to 3600 data points sampled
from f(x, y) over a regular grid from 0 to 60 in each direction. Noise with standard
deviation of 0.03 is added. An automatic relevance determination squared exponential
kernel function is used with the subset of regressors fitting method. The GP is then
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applied to predict f̂(x, y) over the same grid and the 2D shape is recovered by taking
a level set at 0.5.

Capturing uncertainty is an attractive feature of GPIS representations and these can
be intuitively applied to model round fruit or largely flat trellis walls. However these
suffer from inefficient operations during fitting and the additional dimension required
for implicit surfaces makes these too computationally demanding to be practical.
Training the simple 2D example GPIS for 3600 data points takes 95 seconds.

Signed distance fields are well suited to grasping tasks and are a field given by the
distance of that point to the nearest object surface, where points inside an object
are negative distances. Constructing these for partially observed objects is difficult,
but TSDFs solve this by only considering the signed distance field in a non-truncated
region which is close to the zero point of the function, corresponding to an object
surface. The projective version of this representation is well suited to projective
sensors, such as depth cameras, and can be efficiently stored and compressed. Non-
projective TSDFs suffer from very complex updates making the fusion of new sensor
data slow. Distinguishing between semantic objects is problematic and typically
overlapping TSDFs are required, one per semantic class.

Figure 3.2 – An example of a projective SDF (left) and a truncated projective SDF
(right) from Canelhas (2017). Red values are positive distances from the detected
surface, while blue is negative.

Truncated SDFs are considered as an appropriate harvesting choice, and these allow
for very simple grasping control laws such as
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~v = κ∇ftargets − (1− κ)∇fobstacles (3.1)

where ~v is the end effector velocity, κ is an obstacle avoidance tuning parameter,
fobstacles and ftargets are the obstacle and grasp target SDFs respectively. This at-
tempts to place the gripper on the closest target object surface while avoiding nearby
obstacles, but will fail with local minima and is entirely myopic.

Figure 3.3 – An example of raw sensor data in RGB and Depth (left), a mesh repre-
sentation of this (middle) and a voxel grid representation (right). Artefacts such
as missing depth values lead to poor mesh segments which require post-processing.
The voxel grid is much more compute intensive when performing visualisation and
manipulation operations but provides a better volumetric representation of the
data.

Meshes are the dominant representation in computer graphics and are frequently
used in robotic scene representation as well. Typically, meshes are encoded as a set of
vertices, plus facets which contain these. This allows fast access to object properties
such as surface normal, while powerful and efficient tools developed for computer
graphics can be used to interact with object meshes. Capturing geometric uncertainty
is difficult to do using meshes, making them unsuitable for modelling the hard and
soft obstacles present during harvesting. However, for rigid bodies such as the robot
and trailer platform, these are a compact and efficient choice. Figure 3.3 shows raw
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sensor data of a trellis encoded as both a mesh and voxel grid. The connected nature
of the mesh leads to poor results where there are discontinuous jumps in the depth
map. Creating a closed, or ‘watertight’, mesh is required to properly represent 3D
objects. In this case, the trellis is well captured as a non-closed surface mesh.

Voxel grids divide the environment into 3D cubes known as voxels. Each of these can
have arbitrary associated properties, such as the presence of an object or visibility
of that region to a sensor. Voxel grids are easy to visualise and can be readily
transformed into meshes or TSDFs for grasp planning. Being a dense representation,
voxels are very inefficient. Octomaps (octal maps) try to address this using a variable
resolution octal tree data structure to model large unoccupied regions with large
cubes and areas of high complexity using many smaller cubes.

Figure 3.4 – A frame from the picking experiments showing the actual environmental
representation used. The arm, planned pose and trailer are stored as meshes for
motion planning (textured, orange and green shapes). Target fruit are modelled
as sphere primitives and visualised as meshes (white). Rather than constructing
obstacle regions from sensor data, a simplified representation defined by an obstacle
plane primitive is used (yellow-green). The current picking area is also shown for
convenience (blue) along with the arm workspace (red).

Cube shaped voxels are not good for modelling round fruit, or the fine detail of
branches and leaves. Figure 3.3 shows a voxel encoding of a trellis scene with very little
detail being obvious at that resolution level. Approximately 78% of the voxels in that
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scene go towards modelling free space, showing the importance of using octomaps.

The final system design uses a composite of sphere primitive, mesh, and planar rep-
resentations for the various tasks required, shown in Figure 3.4. Spherical plum fruit
are modelled as geometric sphere primitives which are compact and accurate. Rigid
obstacles, including the robot, trailer and gripper are modelled as meshes. Specific
assumptions are made when modelling the hard and soft trellis obstacles, these are
further described in Section 5.2. Under these assumptions the trellis obstacles can
be represented with 2D plane primitives for planning. All objects are converted to
meshes for motion planning and visualisation.

3.2 Study: Shape Completion for Stochastic Voxel
Grids

Shape completion is required when only part of an object is observed and the obscured
geometry must be inferred. This is a common problem in robotics, where projective
sensors are used and actions should be performed without exhaustively scanning the
scene first. For harvesting, this could be applied to predict the extent of partially
obscured trellis obstacles or branches. Deep learning methods are effective at pre-
dicting shape completions given partial data, but are difficult to use with variable
resolution ERs. Voxel grids do not have this issue and are a natural fit for deep neu-
ral network (DNN) shape completion methods. However, in most voxel encodings,
as in Figure 3.3, the occupancy of a region takes on a binary value without properly
capturing sensing and modelling uncertainty. This uncertainty in object pose or ge-
ometry is important for generating good grasps or planning for obstacle avoidance.
To address the issue of capturing uncertainty when performing shape completion in
voxel grids, a stochastic voxel grid representation is investigated and a method for
marginalising predicted grasp performance over this representation is presented.

In this study, a depth camera is applied to a simulated indoor scene to generate
input binary voxel maps with incomplete geometry. The neural network of Varley
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et al. (2017) is extended with runtime dropout layers, allowing for multiple object
reconstructions to be sampled. Grasp planning is performed using these multiple
samples, allowing grasps to be marginalised over probable object shapes. An indoor
setting with common objects is chosen because standard datasets already exist for
performance comparison in this setting and gathering full object geometry ground
truth for trellis environments is very challenging.

3.2.1 Method

The input for shape completion is chosen to be a 40×40×40 binary voxel grid for one
view of an isolated object, resulting in a partial 3D model. This simulates a 3D sensor
observing an unknown object and representing the output as a voxel grid. The voxel
grid resolution is determined by GPU memory limitations. A deep convolutional
neural network (CNN) is applied to perform shape completion by predicting the
occupancy of obscured voxels. Typically, uncertainty is not well represented by CNNs
however, as shown by Gal and Ghahramani (2016), deep network model uncertainty
can be approximated using multiple stochastic forward passes through that network.
The stochastic element is introduced by stochastic regularisation techniques (SRTs),
such as through standard dropout layers which are also active at inference time. By
applying this technique to the shape completion CNN from Varley et al. (2017), voxel
wise uncertainty is extracted for the inferred occupancy of obscured voxels. Gathering
ground truth data for harvesting relevant scenes is challenging, so an existing dataset
of isolated objects is used instead.

Each forward pass of the network with dropout enabled results in one stochastic object
reconstruction (SOR). This is a sample from the probability distribution of possible
object reconstructions learned by the CNN. These independent SORs can be used
with standard grasp planners such as the OpenRave grasping module by Diankov
and Kuffner (2008), which samples grasp approach directions uniformly over a box
around the SOR. The OpenRave simulator then performs a grasp by moving the
hand towards the SOR centre until contact and closing the fingers. Force closure is
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checked and a grasp quality metric (GQM) corresponding to the minimum contact
distance from the object centre is computed for each grasp. This allows grasps to be
planned and ranked for each SOR, the known approach directions means the same
grasp can be applied to multiple SORs. The grasp with either the highest mean or
minimum quality over all SORs is selected, effectively marginalising over the expected
object geometry.

Stochastic Voxel Model

The stochastic voxel grid is a representation of object geometry using a 40× 40× 40
grid of cells. Observed voxels take a value of 1 if any part of an object intersects that
voxel, and 0 otherwise. The occupancy of each unobserved voxel is modelled as a
Bernoulli random variable

po = poccupancy(Vx,y,z)

po ∼ Bernoulli(p̂)

(3.2)

where Vx,y,z denotes a voxel at x, y, z, the expected value and variance of the occupancy
estimate are given by E(po) = p̂ and Var(po) = p̂(1− p̂). For highly certain voxels p̂
takes a value close to zero or one, highly uncertain voxels will have p̂ ≈ 0.5.

Stochastic Regularisation as Bayesian Approximation

Previously, Gal and Ghahramani (2016) have shown that a standard neural network
(NN) with dropout applied before all of the weights layers approximates a deep GP.
In practice, the predictive mean and variance of a given model can be approximated
directly using the results of multiple stochastic forward passes, added to the inverse
model precision.

Var[po] ≈ Var[p̂o] + ϕ−1 (3.3)
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where p̂ is a random vector of the stochastic network output for M forward passes
and the inverse model precision is given by

ϕ−1 = 2Ndλ

pkeep l2
(3.4)

where Nd is the number of training datapoint pairs, λ is the weight decay used in L2

regularisation, pkeep is the probability that a given connection will not be dropped
by the dropout layer and l is the prior length scale which is a data based hyperpa-
rameter that comes from the GP interpretation of dropout. All results presented in
Section 3.2.2 use an inverse model precision of 0.145 which was empirically tuned
using the first 500 examples from the testing dataset.

Polynomial Loss Function

The standard cross entropy loss function for binary classification, equivalent to the
Bernoulli cross entropy with the known labels, is given by

Loss = −τ log(τ̂)− (1− τ) log(1− τ̂) (3.5)

where τ is the true class label and τ̂ is the predicted label. In place of this, a simple
polynomial loss function is proposed for testing, which is motivated by the need to
calculate a loss for both regression and classification. Because the latter of these is
measured using binarised outputs according to

Voxel Class


Class = Occupied, τ = 1 if p̂ > 0.5

Class = Unoccupied, τ = 0 if p̂ ≤ 0.5
(3.6)

The log function cannot be used with this. Instead, a simple polynomial loss is used,
given by



3.2 Study: Shape Completion for Stochastic Voxel Grids 33

Polynomial Loss = 1000
NV

VX,Y,Z∑
Vx,y,z

(p̂− p)% (3.7)

Which is the mean of the difference between the voxel wise predictions p̂ and labels
p, raised to the power of %. NV is the number of voxels, with a numerator of 1000
used for notational convenience. The value of % is a hyperparameter which sets the
aggressiveness of the network in assigning binary class values close to 0 or 1, rather
than uncertain regression values. This must be even for a symmetrical loss function
and % = 4 is used.

Model Architecture & Dataset

The model architecture is modified from Varley et al. (2017) by adding a dropout
layer with keep probability 0.5, to the final densely connected layer, as shown in
Figure 3.5. All layers prior to the final dense layer have their pretrained weights
frozen and the final reconstruction layer is retrained with dropout in place using
Keras and a Tensorflow backend. This preserves the learned features from the 3D
convolutions. Unlike the original network, the resulting output is not thresholded
and remains as a float value between 0 and 1.

Figure 3.5 – The shape completion network with an additional stochastic dropout
layer which is active at inference time.

The complete training and testing dataset is that used in Varley et al. (2017) which is
generated using the YCB data from Calli et al. (2015), and Grasp Database from Kap-
pler et al. (2015). It consists of binary voxel grids of 726 uniformly sampled views,
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for each of 608 objects taken from the YCB and Grasp Database datasets. Following
their methodology, this is split into a training dataset of 486 objects and a test set
of 122 objects. See Figure 3.8 for example inputs. With fine tuning from pretrained
weights, the dropout enabled model loss stabilises after approximately 3.6 hours of
training on an NVIDIA K80 GPU.

Model Validation

The stochastic reconstruction network is validated against the state of the art network
in Varley et al. (2017). Because a low numerical loss provides no guarantee that each
SOR will resemble a possible object or be contiguous, 50 stochastic reconstructions
each, of 4 representative objects are also checked visually. For the test set of 122
test objects, 88,572 distinct binary voxel grids are generated, one for each view. A
randomly selected set of 500 are used to determine the inverse model precision and
the remainder are used to calculate the non-stochastic and stochastic losses.

A sweep over the number of stochastic object reconstructions to generate, was con-
ducted by stepping from 10 to 200 network passes in increments of 10. Mean loss was
unaffected by the number of passes, while the variance of this loss continues to decline
with increasing passes. Therefore, 50 passes was chosen as a trade-off between perfor-
mance and reduced variability. A set of 4 challenging objects were selected to test the
grasp performance of this method and to illustrate the reconstruction results. These
are a detergent bottle, stapler, spraybottle, and lightbulb, as shown in Figure 3.6.

Two forms of stochastic loss are reported. The mean stochastic loss empirically cal-
culates the p̂ of each voxel as the mean occupancy value over the 50 reconstructions.
While variance stochastic applies Equations 3.3 and 3.2 with the empirically calcu-
lated sample variance and model precision to recover p̂.

Grasp Performance Validation

Following confirmation that the dropout network produces reasonable SORs, these
are used in a grasping simulation to assess whether planning over multiple possible
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Figure 3.6 – The four illustrative test object ground truth completions. Clockwise
from top left; detergent bottle, stapler, lightbulb and spraybottle.

reconstructions leads to a more robust grasp than a single reconstruction. By gen-
erating multiple SORs it is possible to sample from the object geometry distribution
learned by the CNN, which accounts for the correlation between voxels, unlike directly
sampling from the Bernoulli distribution of each individual voxel.

A model of a three-fingered reconfigurable gripper, further described in Section 5,
is utilised in OpenRave to plan grasps which are assessed using the inbuilt grasp
performance metric of Diankov (2010). This is calculated as the sum of the squared
Euclidean distances between each contact and the bounding box centre

Performance = −
 ∑
Cx,y,z

(Cx,y,z − Tx,y,z)2

 (3.8)

where Cx,y,z are the contact x, y, z coordinates, Tx,y,z are the target object axis aligned
bounding box centre coordinates. Higher values indicate better grasps. The grasping
scenario is shown in Figure 3.7, with the first detergent bottle SOR on a table in front
of the hand, which is mounted to a standard Barrett WAM-segway platform.

Algorithm 3.1 describes how planned grasps are marginalised over multiple SORs for
a single object. First a set of grasps is sampled on a sphere around the object location
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Algorithm 3.1: The Uncertainty Aware Shape Completion Grasp Planning
Algorithm
Input: partial_voxel_grid, object_pose, hand_model
1: for 50 passes do
2: SORs at pass ← run SRT CNN
3: end for
4: mean_SOR ← voxelwiseMean(SORs)
5: load mean_SOR,hand_model to OpenRave at object_pose
6: grasps ← generateGrasps(mean_SOR, hand_model)
7: valid_grasps ← validateGraspsForIK(grasps)
8: for each SOR in SORs do
9: load SOR to OpenRave at object_pose

scores ← getGraspPerformance(valid_grasps, SOR)
10: end for
11: top_mean_grasp ← valid_grasp at max(mean(scores))
12: top_min_grasp ← valid_grasp at max(min(scores))
Output: top_mean_grasp, top_min_grasp

and checked for reachability. Each inverse kinematics (IK) valid grasp is then tested
on the 50 reconstructions, where both the minimum and mean performance for each
grasp, over all SORs, is considered. Grasp quality on the true object geometry is also
calculated using the ground truth voxel grid.

3.2.2 Simulation Results

Model Validation Results

Sample input data and the corresponding mean reconstruction are shown in Fig-
ure 3.8. To voxelise the output, the mean of 50 stochastic passes is calculated for
each voxel and thresholded at p̂ > 0.5. Table 3.1 reports the three forms of poly-
nomial loss. The non-stochastic network type has previously been shown in Varley
et al. (2017) to produce good reconstructions, so forms a baseline for comparison.

The mean stochastic approach performed best under this loss function, while variance
stochastic unexpectedly did worse than the baseline. This may indicate that the
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Figure 3.7 – The OpenRave grasping scenario showing a detergent bottle reconstruc-
tion.

Figure 3.8 – Four representative voxel grid inputs (left of pair) and their corresponding
mean stochastic reconstructions (right of pair), each of these is the voxelised mean
of 50 SORs.

model precision is not well estimated, or the Bernoulli probability relationship in 3.2
is not a good choice of voxel model. Inter-object variance is quite large with certain
complex geometries resulting in poor reconstructions with large holes and occupied
voxels outside the true object extents, 95% of objects have a mean stochastic loss
value less than 20.58 while the maximum is 195. The worst performing reconstruction
was a bowl with the concave half facing directly away from the viewpoint, which was
incorrectly reconstructed as a sphere. A lack of non-spherical objects with this partial
appearance in the training set, led to a confident but incorrect prediction, highlighting
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the importance of a diverse training set.

Non-
Stochastic

Mean
Stochastic

Variance
Stochastic

Mean 7.964 7.352 9.772
Std. Dev. 13.475 12.534 9.724

Table 3.1 – Polynomial loss results for each reconstruction method on test set.

The network inference runtime is an average of 77.4ms per pass, with 50 passes per
object, on an Nvidia GTX 860M requiring 4GB of memory. SOR passes can be
executed in parallel to reduce time requirements. Inference at around 13Hz should
be possible during harvesting, with additional GPU hardware.

Figure 3.9 – Voxel uncertainty for reconstructions of the detergent bottle (top left)
and an inverted vertical slice of this (top right). Also for the spraybottle (bottom
left) and an inverted slice of this (bottom right), the blue protrusion is the rear of
the spray head.

For two of the illustrative objects, the voxel wise uncertainty is visualised in Figure 3.9,
for the entire object and a slice through the mid-plane. The size and colour of each
voxel is scaled by 1 − |1 − 2p̂| so larger voxels are more uncertain. Ground truth
reconstructions are in blue. The uncertain voxels are correctly clustered around the
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surface of the object, and are more prominent in complex unobserved regions, such
as the rear of the spraybottle head. The interiors of both objects are high confidence
regions.

Combined with visual inspection of the 200 SORs produced for the objects in Fig-
ure 3.6 it is clear that the CNN provides coherent and reasonable object reconstruc-
tions. Performing stochastic passes with this CNN is an effective means of sampling
from the distribution of geometries learned by the network and conditioned on the
voxel grid input.

Grasp Performance Results

Performance of the marginalised grasps by the criteria of mean and minimum score
is presented in Table 3.2. Mean grasp performance is calculated by finding the best
grasp for each of the 50 SORs, applying these to the true object and averaging the
resulting scores. True performance of the best mean, and min grasps refers to the
top_mean_grasp and top_min_grasp quality respectively, found using Algorithm 3.1,
and tested on the true object shape.

Figure 3.10 – The performance of each valid grasp generated for the detergent bottle,
with mean and min calculated across all reconstructions, ranked by the true grasp
performance metric on the ground truth object shape.
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Detergent Stapler Spray-
bottle

Light-
bulb

No. of Generated Grasps 864 2320 960 1704
No. of IK Valid Grasps 46 7 33 73
Mean Grasp Performance -0.0059 -0.0042 -0.0130 -0.0186

True Performance of
Best Predicted
Mean Grasp

-0.0025 -0.0024 -0.0031 -0.0163

True Performance of
Best Predicted
Min Grasp

-0.0025 -0.0024 -0.0037 -0.0171

Average Percentage
Improvement Of
Best Mean Grasp

Over Best Individual
SOR Grasps

85.6% -6.7% 68.4% 4.5%

Table 3.2 – Stochastic reconstruction marginalised planning samples and grasping
performance results (higher performance is better).

Selecting the best grasp for a single SOR would, on average, perform 38% worse than
considering grasps marginalised over multiple SORs, although the opposite is true
for the stapler. Note that only a small number of valid grasps were generated for
this object despite doubling the sampling density, this is due to its small size making
grasp planning challenging. The average testing time per grasp is 290ms, though the
process could be fully parallelised.

Figure 3.10 shows the 46 valid grasps for the detergent bottle, ranked by true perfor-
mance. With 50 SOR samples, the minimum predicted quality of a given grasp over
all reconstructions, did empirically lower bound the true performance of that grasp.
The mean grasp quality correlates closely with true grasp performance, indicating
that the true object reconstruction is accurately captured by the aggregated SORs.

Figure 3.11 shows the top_mean_grasp performance as a red line, along with the
best grasp performance per individual SOR. In this case, all SOR grasps were worse
than or equal to the marginalised grasp, although this was not true for other example
objects. This indicates that the best grasp marginalised over all SORs is typically
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Figure 3.11 – The true performance of the best grasp generated for each detergent
bottle SOR, and the true marginalised grasp performance (higher is better).

also the best grasp for each individual SOR, though not necessarily vice-versa.

One limitation of this approach is that the probability of a given reconstruction
being correct is not explicitly represented, instead it is built up from the appearance
frequency of SORs similar to that geometry in the object reconstruction set. This
requires a large number of SORs to properly approximate the underlying distribution
of reconstructions produced by the CNN. However, many methods exist for improving
sampling efficiency, such as importance sampling.

3.2.3 Stochastic Shape Completion Study Conclusion

Applying stochastic regularisation techniques to the reconstruction network does cap-
ture voxelwise uncertainty. Sampling from this network results in sensible object re-
construction possibilities, which preserve the correlations between voxels. This allows
multiple possible object reconstructions to be tested during grasp planning, resulting
in better performing grasps which are marginalised over reconstruction uncertainty.
While there are well known limitations to grasping simulation and the accuracy of
grasp quality metrics, marginalisation over 50 SORs improved simulated performance
by an average of 38% for the 4 tested objects.
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While the applied method builds upon cutting edge shape completion work, the result
of this when reconstructing isolated and perfectly sensed objects with common and
easy to model geometries is still not highly accurate. If applied to the much harder
problem of reconstructing multiple fruit, plant and trellis objects in a scene with
complex organic shapes, this method is unlikely to yield useful results for the G&M
task. For this reason, and based on the inefficiency and poor suitability of using a
voxel grid ER, stochastic voxel grid shape completion was not applied to the final
harvesting system. With additional development and training datasets specific to
tree crop tasks, this technique may become viable for use in harvesting. Predicting
the geometry of trellis and tree branch obstacles from partial views remains a useful
functionality in harvesting and improved shape reconstruction is one possible pathway
to this.

3.3 Sensor Selection

A combination of meshes for obstacle motion planning and geometric primitives for
target tracking is selected as the environmental representation. The appropriate plat-
form sensors can then be chosen. Criteria when selecting these include compatibility
with the ER, range, resolution, accuracy, mass, power requirements, size, and ro-
bustness to environmental conditions. Several forms of sensing were considered, as
listed below. The term ‘embedded’ here refers to those integrated into the robotic
end effector for harvesting.

• 2D RGB cameras. Including embedded micro-cameras, high resolution cameras
and event cameras.

• 3D cameras. Including stereo, time of flight and structured light cameras.

• Lidar. Including mechanically scanned and solid state.

• Tactile and embedded. Including fingertip deformation sensing, surface texture
sensing, and embedded force-torque sensors.
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• Pre-touch. Including sea shell effect, embedded time of flight and capacitive.

• Multi-spectral and thermal imaging

• Soft robotics. Including pressure, deformation and vibration sensors.

Tactile, pre-touch and soft robotic sensors were ruled out based on a complexity
to benefit trade-off. These may be used to address specific problems identified in
the harvesting procedure, but are complex and difficult to integrate so were not
included in this prototype. 3D cameras combining stereo vision and structured light
were chosen in place of lidar, these are much more compact and lower cost. The
disadvantage is shorter range and lower accuracy, which is partially corrected for using
the filtering described in Chapter 4. Susceptibility to outdoor lighting conditions is the
primary drawback of cameras, as seen in Section 4.1. Modern DNN object detection
algorithms were expected to perform well enough that using multi-spectral cameras
for fruit detection would not be sufficiently beneficial to justify their additional cost.

Three key functionalities were identified for the sensor selection; a 3D camera to
localise fruit from a distance, a wide angle embedded 2D camera for final approach
control which avoids obscurations, and a platform tracking camera to provide the
trailer pose in a world frame. Specifications for these are summarised in Table 3.3.

Name Realsense D435i Wide Angle Camera Realsense T265
Type RGBD Camera RGB Camera SLAM Camera
Purpose Fruit 3D localisation Final approach IBVS control Platform tracking in world frame
Mass (g) 72 12 60
Size (mm) 90 x 25 x 25 25 x 24 x 18 108 x 25 x13
Resolution (px) 1280 x 720 1080 x 1920 848 x 800
Field of View
(Diagonal °) 77 160 163

Range 10m N/A
Acceleration:
±4g

±2000 Deg/s
Accuracy
(Relative Error) <2% N/A <1%

Framerate (Hz) 30 30 200

Table 3.3 – Selected imaging sensor specifications.

RGBD cameras provide semi-dense depth maps which integrate well with the spheri-
cal fruit ER, most lidar models lack the sampling density to easily reconstruct spheres.
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Simultaneously, the additional structure imposed by the geometric primitive ER al-
lows a lower accuracy sensor to still provide effective information. A Realsense D435i
was chosen as the RGBD camera, this uses a near infrared imaging pair with a speckle
pattern projector to increase the texture on homogeneous surfaces. It also integrates
an RGB sensor to provide an aligned RGBD image, the onboard inertial measurement
unit (IMU) is not used. The D435i is too large to fit within the soft gripper, so is
mounted on top, as shown in Figure 3.12. Another key drawback is the narrow field
of view (FoV) which means it cannot be used for controlling final fruit approach and
grasp execution. To overcome this, a separate wide angle RGB camera is situated
within the soft gripper cup. All fingertips are visible in this camera, right up until
the point of fruit contact. Being situated coincident with the z axis of the gripper
also reduces the probability of target obscuration by leaves.

Figure 3.12 – The two primary sensors used for the system, consisting of a D435i
RGBD camera and wide angle RGB camera. Shown in their final mounting loca-
tions on the soft gripper, as described further in Section 5.1.2

Many existing harvesting designs use a fixed camera operating in a global frame for
perception. Being a first effort for plum crops, an eye-on-hand design was chosen.
Increasing image information as the gripper approaches the target, which can be
used for visual servo control, is one benefit of this. But the primary reason was
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camera positioning flexibility during initial research, as a mobile camera can effectively
simulate a fixed camera within the arm workspace, if that is determined to be more
accurate

While harvesting can all be planned in a local frame, tracking fruit in a world frame
allows for yield mapping, growth tracking and fruit counting. All of these are valuable
tools for growers, which are built upon the data required for autonomous harvesting.
To track the trailer relative to a world frame, the Realsense T265 simultaneous local-
isation and mapping (SLAM) camera is chosen. This visual SLAM solution includes
a wide angle stereo imaging pair, IMU and onboard processing to allow for SLAM
loop closure when estimating the trailer pose within the orchard.

Ideally the wide angle camera used for the final approach controller would also provide
3D data. Embedding a second camera of that size, to form a stereo pair, is not
possible. Custom designed optics could achieve the required compactness, but with
a significantly increased development timeline and additional platform cost. Instead,
two algorithmic approaches are investigated for generating 3D information from this
camera. The first applies a deep network to directly predict a depth map from a single
RGB image, this relies on learning the typical relationships between object classes,
features, optical phenomena, and geometry. The second uses an active perception
framework to estimate fruit positions using multiple views and then optimise the
camera trajectory to reduce position uncertainty, and is presented in Section 4.5.

3.4 Study: Monocular Depth Inference

With depth maps being a valuable scene representation and monocular cameras the
most flexible sensing modality, the combination of these is a natural topic for explo-
ration. While generating 3D data using multiple camera sensors or poses is a well
studied topic, the generation of depth maps from a single monocular camera frame is a
much harder problem which has only recently been effectively approached using deep
learning techniques. Monocular depth inference could be used with the wide angle
RGB camera to provide depth maps within the canopy during harvesting. Structure
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from video is an alternative, but performs poorly when frames are not continuous,
such as when passing through leaves. Stereo vision can be used, as in the D435i
camera, but requires a larger and more expensive camera.

Therefore, predicting accurate depth maps using images from the wide angle camera
would allow for better grasping accuracy and expand the system sensing capabilities.
It should be noted that some applications use relative depth maps, where true scale
is ignored, but absolute depth maps are required for robotic manipulation. This
study section briefly summarises key methods and results from Brown and Sukkarieh
(2019) which are specific to harvesting. Further details and original figure sources are
available in that paper.

Monocular depth inference is a challenging and ill-posed problem due to scene scale
and focal length ambiguity. It requires learning correspondences between object fea-
tures, geometry, and projected images. Within agriculture, object classes are typically
well known, but geometry is continuously variable as plants grow and change. This
causes learned object geometries to be ambiguous with respect to the true object
scale. An analogy is viewing a tree from a distance or a sapling from close proximity,
with both producing similar images.

Existing work has shown monocular depth inference to be a tractable problem when
using large training sets from consistent scenes, such as indoor environments or au-
tonomous vehicle data. But issues of scale ambiguity are not well addressed. Exper-
iment results indicate that addition of a single true range measurement is sufficient
to resolve simulated scale ambiguity in two existing datasets. It was also determined
that the projection method used when sampling range points from a depth map is
important to inference performance. Limitations in the range sensor chosen were
observed when applying this to outdoor data collection. Fine tuning for agricultural
scenes, on models trained using an indoor dataset, was not found to work, so large
RGBD agricultural datasets would be required to apply this technique in practice.
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3.4.1 Background

Pinhole Camera Model

The pinhole camera projection model is used to define correspondences between the
depth map, colour image and 3D scene points. The distortion model from Heikkila
and Silven (1997) is assumed to apply. Two axes systems and a point are defined
in Figure 3.13. (XC , Y C , ZC) is the camera frame, where the pinhole aperture is
located. (uC , vC) are the image plane axes, separated from the camera frame by the
focal length. PC is a scene point in the camera frame and PC is a point in the u, v
image plane.

Figure 3.13 – The pinhole camera model showing the camera focal point and image
plane. Also, the projection of scene point PC into the image plane (uC , vC) at PC .

Homogeneous coordinates are used to allow linear projection operations given by
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PC
X

PC
Y

PC
Z

1

 , (3.9)

where, C is the intrinsic camera matrix which is defined as
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C =


fx c u0 0
0 fy v0 0
0 0 1 0

 (3.10)

u0, v0, known as the principle point or optical centre, is where the projection of a
point on the ZC axis falls in the uC , vC frame. The image plane axis skewness is
denoted c, and is assumed to be zero, while fx, fy are the focal lengths in XC and
Y C .

Figure 3.14 illustrates a range sensor mounted parallel to, and below, the camera.
(XS, Y S, ZS) is the location of the range sensor which returns a reading of the ZS
distance. Each scene depth map is defined within the frustum formed by the image
plane projection and maximum depth map value. The depth map value for point P
is the ZC distance to this point, which is equal to ZS as these are aligned. Note that
the depth map is defined by the perpendicular, rather than radial camera distance to
the closest object point falling in that depth pixel.

To generate simulated range measurements using ground truth depth maps, it is
required to find the depth map pixel with the smallest distance % which satisfies

PC =
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(3.11)

where P S
X and P S

Y are the range sensor location in the camera axes. This process
corresponds to projecting each of the possible range measurements along ray ZS and
finding the first distance that falls behind the depth map value at the depth pixel
intersected by ZS.
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Figure 3.14 – A 2D illustration of the axes locations for the camera and range sensor.
A single point on the depth map and its image plane projection is also shown. Note
the depth map is defined by the ZC distance.

Scene Depth Ambiguity

Projecting a point from the image plane into a scene using Equation 3.9 results in a
ray. Because 3.9 provides 2 equations constraining 3 variables, additional information
must be provided to recover true scale projections. If the point is part of an object
with known geometry and scale, the object size in the image plane can be used to
recover its approximate true distance using

d = hY fy
hv

(3.12)

where hY is the true object height, hv is the image plane object height, fy is focal
length and d is the mean object depth. The example here only uses the Y axis
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projection, but equally applies to X. Ambiguity can be introduced by unknown hY
or fy and the local geometry must be accounted for.

If an isotropic scaling model is assumed, scale ambiguity can be captured using a
single factor S which is applied to a canonical object size hcX,cY,cZ to generate the
size of a specific object instance hX,Y,Z .


hX

hY

hZ

 = S


hcX

hcY

hcZ

 (3.13)

3.4.2 Method

This study investigates whether a single range measurement can resolve both scale
and focal length ambiguity when predicting depth maps from monocular images. This
is first tested using two existing datasets, NYUv2 which is indoor RGBD scenes, and
KITTI which consists of autonomous driving scenes with stereo RGB and aligned
lidar data. These are both modified to simulate variable scales and focal lengths,
along with range measurements constructed using the ground truth for each image.
Two new datasets are also tested, a set of tabletop objects and one from an outdoor
agricultural scene. These are gathered using a custom designed camera cluster which
includes an RGBD, wide angle and narrow angle camera. It also mounts a single
reading, time of flight (ToF) chip for range measurement, as shown in Figure 3.15.

All four datasets are used to independently train and test the Sparse-to-Dense network
architecture presented in Ma and Karaman (2018). This takes an RGB plus range
measurement and predicts the full image depth map. For the NYUv2 dataset the
ResNet50 backbone is used, while KITTI uses ResNet18. Two sampling techniques
are compared, the simplest of these is n-Random where n depth values from the
ground truth depth map are randomly selected and added to their corresponding
positions in the input depth map. Projective sampling applies Equation 3.11 to
simulate what reading the camera test rig would measure if applied to that dataset.
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This projection approach makes use of the transform between the ToF and D435
RGB axes and uses the intrinsics matrix for this camera. Lidar depth samples form a
sparse ground truth in the KITTI dataset so this uses 1-Nearest sampling where the
nearest non-zero depth reading to the projective model is used. RGB input forms a
baseline where an empty depth map is used at the input. For both newly gathered
datasets the ToF sensor reading is used to set a single pixel of the input depth map.

Figure 3.15 – The cameras and range sensor mounted in the tested configuration

Focal length variation is added using a crop and resize operation on the RGB input,
the size of which is randomly sampled from a uniform distribution for each training
pair of one RGB image and one depth map. This results in a focal length adjustment
of 100% to 150%. To simulate variable scene scales, for each training pair, one of the
following values is randomly sampled and the depth map for that image is multiplied
by this. Scale set 1 is sampled from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5} and
set 2 from {0.1, 1.0, 1.5}.

A tabletop dataset is gathered by imaging 14 common household objects using the
camera test rig. This is positioned using a UR5 arm along a set trajectory consisting
of 21 views captured over 3 different heights. Each image has a binary object mask
manually annotated, to separate the target object and background. Both RGB camera
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images, along with the depth map, are aligned with the D435 RGB frame through a
rigid image transform to maximise binary mask overlap. Loss on this datasets is only
calculated for the object mask pixels, excluding the background.

Figure 3.16 – A sample frame from the outdoor dataset where several similar looking
plants of various scales can be seen.

An outdoor dataset is also gathered by imaging a plant nursery which has a wide
variety of shapes and sizes of flora. Figure 3.16 shows an example frame with both
RGB and depth data. Operating outdoors leads to variable lighting with under
and over-exposed frames. Many complex geometries are captured, with object scale
ambiguity present in some plant types. Performance of the ToF sensor under direct
sunlight was poor and only 4% of the original images had valid depth readings. This
resulted in 61 frames for the transfer learning dataset, 40 of which form the training
set. Further method and dataset details are available in Brown and Sukkarieh (2019).

3.4.3 Results

Experiments are run for various combinations of the projection method, dataset and
simulated depth ambiguity conditions. Error metrics of root mean squared (RMS)
error in metres, mean absolute relative error and δ1 from Ma and Karaman (2018)
are reported. The second of these is a unitless ratio, and δ1 is the percentage of pixels
with a relative error within 25% of the true value.
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NYUv2

Sampling a single random depth pixel as input was found to be worse than RGB-
only in the results of Ma and Karaman (2018) which is also reflected in these results.
However, projective sampling of a single point outperforms both of these. Inputting
100 points from random locations significantly improves the performance on all tested
configurations.

On the simulated focal length ambiguity data, projective sampling provided no ad-
vantage over RGB. Comparison of RMS error values is not informative when either
simulated ambiguity type is applied. When multiple scene scales are simulated, pro-
jective sampling consistently outperforms RGB-only.

With both forms of ambiguity present, RGB accuracy further degrades, but a single
projective sample is capable of producing depth map estimates only slightly worse
than when a single form of ambiguity is present.

Sampling Variable
Focus

Variable
Scale RMSE Mean

Abs Rel δ1

RGB N N 0.555 0.156 79.2
100-Random N N 0.273 0.055 96.0
1-Random N N 0.598 0.167 75.2
1-Projective N N 0.546 0.150 79.8

RGB Y N 0.608 0.175 74.8
100-Random Y N 0.262 0.051 96.5
1-Projective Y N 0.607 0.166 76.0

RGB N Set 1 1.021 0.389 40.0
100-Random N Set 1 0.368 0.065 95.1
1-Projective N Set 1 0.623 0.172 74.0

RGB N Set 2 1.652 3.438 30.3
100-Random N Set 2 0.338 0.089 92.0
1-Projective N Set 2 0.588 0.179 74.0

RGB Y Set 2 1.927 4.136 16.4
100-Random Y Set 2 0.202 0.074 93.5
1-Projective Y Set 2 0.456 0.187 72.8

Table 3.4 – Depth map prediction performance using monocular imagery from the
NYUv2 dataset for various sampling methods and scale sets.
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KITTI

When using single point sampling, the accuracy was less than just RGB input for
the KITTI dataset. KITTI does not have dense ground truth depth data, so the
nearest available depth pixel to the projective pixel location is used. This additional
variance in the range measurement pixel location, compared to NYUv2, may explain
the worse performance. Dataset differences may also contribute, a randomly selected
pixel from KITTI is more likely to fall on the background than a distinct object,
as compared to NYUv2. KITTI is expected to have lower object scale ambiguity as
road scenes feature well defined object classes of similar scales. Comparable results
to NYUv2 were otherwise seen. A single range measurement outperforms RGB-only
when variable scene scales are simulated but focal length ambiguity alone cannot be
distinguished by projective sampling.

Sampling Variable
Focus

Variable
Scale RMSE Mean

Abs Rel δ1

RGB N N 4.704 0.116 85.5
1-Nearest N N 4.834 0.117 84.1
RGB Y N 4.528 0.107 87.3

1-Nearest Y N 4.640 0.110 86.5
RGB N Set 2 11.553 2.983 30.4

1-Nearest N Set 2 7.124 1.127 64.1
RGB Y Set 2 11.822 3.098 31.1

1-Nearest Y Set 2 7.505 1.165 65.9

Table 3.5 – Depth map prediction performance using monocular imagery from the
KITTI dataset using two sampling methods and one scale set.

Experimental Test Datasets

Depth map prediction performance on the new indoor and outdoor datasets was
poor, as summarised in Table 3.6. Despite applying transfer learning, in the form
of imagenet pretrained weights, to minimise data requirements, the network was
unable to predict accurate depth maps. This is likely caused by changes in the scene
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appearance and significantly different average scene scale to NYUv2 and the small
training dataset set size.

Sampling RGB Source RMSE Mean Abs Rel δ1

Bench Top Dataset
RGB Wide 0.565 0.190 75.6
1-TOF Wide 0.668 0.227 60.1
RGB Standard 0.449 0.164 79.1
1-TOF Standard 0.528 0.192 67.5
RGB Narrow 0.664 0.208 65.8
1-TOF Narrow 0.792 0.306 55.7

Outdoor Dataset
RGB Standard 2.719 0.398 38.6
1-TOF Standard 3.05 0.476 29.6

Table 3.6 – Depth map prediction performance using monocular imagery of indoor
and outdoor scenes generated using the experimental testing hardware.

3.4.4 Monocular Depth Inference Study Conclusion

Results in Table 3.4 indicate that a single range measurement can resolve large scene
scale ambiguity in practice. However, the performance of this technique on focal
length changes and datasets without large amounts of scale ambiguity, such as KITTI,
is mixed. Projective sampling is important, and using multiple input points was found
to be very effective but requires significantly larger and more expensive hardware to
do this.

Serious limitations in the ToF sensor chosen were observed when the outdoor dataset
was gathered. A 2m range was insufficient for many frames, while changing light
conditions in direct sunlight caused issues with ground truth depth maps and ToF
readings with the hardware used. Transfer learning from NYUv2 to the new outdoor
dataset was not effective and additional training data is likely needed to apply this
technique in such environments. Gathering sufficient amounts of training data is not
entirely straightforward. The shadowing, occlusion, alignment error, and sparseness
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of depth maps produced by the D435 causes artefacts that may be learned by the
network. Alternate depth camera models may perform better outdoors and should
be explored for this application. Impacts of depth ambiguities on current monocular
depth prediction approaches have still not been fully explored. The fractal structure of
plants means that depth ambiguity may be a more significant problem in agricultural
scenes than in built environments.

Applying this technique to the harvesting prototype would require an additional ToF
sensor, reader board and the aforementioned large training datasets to be effective.
Even with these in place, predicting constantly variable organic scenes is more difficult
than the NYUv2 case, and performance on that is insufficient for fine manipulator
control. For these reasons, monocular depth inference is not applied to the prototype
harvesting system.



Chapter 4

Fruit Localisation

With the environmental representation of geometric primitives selected and the sens-
ing approach chosen, the next functional module consists of fruit localisation. This
occurs first in the 2D camera frame, the 3D pose is then extracted using depth in-
formation and filtered over time. This approach leverages the high performance of
object detectors for 2D imagery, and the available depth information. Section 4.5
explores an alternative method for localisation.

As illustrated in Figure 4.1, object detection is first used to place a bounding box
around the extents of each fruit in a 2D image. Once an image patch containing
the fruit is known, a highly tolerant hue-saturation-value (HSV) filter is applied to
segment pixel locations on the actual fruit. This excludes leaves and stems, which
are not solid regions for grasping. These same pixel locations are extracted from the
depth map and the target depth estimated as their median. Fruit depth is combined
with the pinhole camera projective model to determine the world frame fruit position.
Estimated positions from multiple frames are finally combined into a single filtered
estimate which tracks the location of each target fruit. These filtered locations are
passed to the grasping modules described in Chapter 5.

Three specific areas of the localisation process are chosen for in depth studies. A com-
parison of multiple architectures for fruit detection in harvesting identifies the best
of these, reducing false detections and missed fruit under both day and night condi-
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tions. An autocovariance least squares method for tuning noise covariance matrices
in PBVS is presented, reducing filtering error and manual tuning effort. An EKF
based active perception approach that can function without camera depth sensing is
explored, which could reduce system errors when depth is unavailable.

4.1 Object Detection

Accurately and consistently identifying fruit in 2D camera images is a key require-
ment for effective fruit localisation in this system. Like most current research efforts,
this is approached with deep learning tools which require large training datasets. Un-
fortunately, when working with seasonal produce, images of the target fruit captured
under harvesting conditions may not be available prior to initial field trials. Instead
a two phase approach was used with the prototype.

An initial detection system is developed to meet the engineering goals of the platform,
such as framerate, training time and compute requirements. This is used for detection
and harvesting during field trials. Data gathered from these trials is then applied to
perform a detector performance comparison study, to select the best architecture for
future trials.

An HSV thresholding detector was first tested, this technique has been applied to har-
vesting systems in the past and is extremely simple. While HSV performed adequately
for pre-testing on apples, the Victorian plum crop could not be well segmented using
this approach due to similar soil colouring. Initial testing in the field immediately
ruled out using this method, which was confirmed by more rigorous lab evaluation.
Using the data from Section 4.2 a recall rate of 25.1% and precision of 80.3% was
seen for the HSV filter, with 42.1% of the correct detections having an inaccurate
bounding box.

Yolov3 is selected as the initial deep network with the default parameters used. This
is easy to train and deploy on the embedded inference computer described in Sec-
tion 6.1.2, with competitive accuracy and speed among current generation detectors.
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Figure 4.1 – Fruit localisation uses the D435i RGBD data. First, object detection is
run on RGB images, followed by HSV filtering on each bounding box patch. The
HSV mask is used to select which depth map pixels are used for median depth
calculation. The bounding box centroid and median depth, corrected for fruit
diameter, are applied to the pinhole projective model to determine target pose,
which is passed to the EKF.
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Maximising in the field training effectiveness was a key goal, so Yolov3 is pre-trained
on plum images scraped from the internet.

When deployed to the field trial, 100 images of approximately 700 plums, were gath-
ered on the first day and Yolov3 was fine tuned overnight. Better detector performance
yielded more harvesting attempts on the following day, giving more training data for
the detector fine tuning. This cycle was repeated a total of 3 times, over 3 days, even-
tually resulting in an effective object detector by the trial conclusion. This field trial
is further described in Chapter 6. Addressing retraining amid seasonal variations is
one complexity of commercial autonomous harvesting. The experiences here suggest
overnight transfer learning is feasible and only a few days of harvest time are lost to
object detector training for each new cultivar variety. Returning to the same fruit in
the future should reduce this timeline further, but training should begin several days
before the first harvest is due to minimise delays.

For the embedded Yolov3 model, recall was 32.2%, with a precision of 100%, and
only 2.7% of bounding boxes were inaccurate. This is significantly better than HSV
detection but still lower than expected. The poor detector performance motivated
a standalone comparative study to address the challenges of object detection for
harvesting.

Eye-in-hand sensing provides distinct advantages for fruit harvesting by allowing for
continuous feedback control right up to the point of picking. This decreases position-
ing error upon gripper final approach. However, as the hand and camera move from
viewing the entire trellis to picking a specific fruit, large changes in lighting, colour,
obscuration, and exposure occur. These issues can be seen in Figure 4.2 and make
detection for eye-in-hand harvesting a uniquely challenging problem.

Controlled lighting is one technique for dealing with illumination changes, but intro-
duces extra complexity and cost. It is challenging in daylight conditions and must
be co-located with the eye-in-hand camera to avoid being obscured. Having object
detectors tolerant to most illumination issues is a more convenient solution if possible.

Obscuration is a fundamental part of crops that grow within a tree canopy and plums
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Figure 4.2 – Clockwise from top left are examples of; a typical night time eye-off-hand
viewpoint, a typical day time eye-in-hand viewpoint, blurring due to low light levels
at night, and exposure and colour changes due to the camera entering the sun after
being obscured by leaves.

which are not at all obscured, often suffer from sunburn, reducing their quality. Using
multiple views in a filtering and tracking framework allows fruit to be harvested even if
they can only be seen from some camera viewpoints. Detectors capable of identifying
mostly obscured fruit are important for this to function properly.

4.2 Study: Object Detector Comparison

While Yolov3 was chosen for the initial harvesting trial, this choice was partially based
on familiarity and ease of implementation. Using the images gathered during the trial,
various modern object detection architectures can then be properly compared for their
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performance on this task. In this study, 4 deep learning object detection networks
are assessed against day and night datasets gathered during the prototype harvester
field trials. Additionally, two methods for fusing depth and image information are
tested for their impact on detector performance. Significant differences between day
and night accuracy of different detectors were found, transfer learning is identified
as essential in all cases, and depth information fusion is assessed as only marginally
effective.

4.2.1 Method

To test the performance of current generation object detector architectures for eye-
in-hand harvesting, images were gathered from the D435i RGBD camera during the
prototype field trial. A total of 700 images were extracted and annotated, these
are split evenly between day and night datasets. Two previous generation object
detection deep learning networks, Faster-RCNN and YoloV3, are benchmarked on this
dataset, along with two current networks; RetinaNet and CenterNet. Each network
architecture is trained and tested on the day and night datasets separately. Both
pretrained weights for transfer learning from a non-agricultural task, and randomly
initialised weights are used with each architecture.

Because depth is required for fruit localisation, the fusion of RGB and depth infor-
mation for detection is also tested on the day and night datasets. Both early and
late data fusion is trialled using the RetinaNet architecture. Early fusion treats the
network input as a 4 dimensional RGBD image, while in late fusion the image and
depth features are concatenated after being extracted by parallel network backbones.

Dataset

During the field trial described in Chapter 6, image feeds from the Realsense D435i
were recorded. An embedded version of the YoloV3 model trained on previous data
was used to detect harvesting targets with the D435i, all detected fruit were at-
tempted, resulting in many failed picks in the current dataset. Several hours of
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sensor data were recorded during harvesting over the period of one day with direct
sunlight, shadowed sunlight, and overcast conditions. For night time operation, a
single diffused floodlight was used, mounted off the arm.

During harvesting, the image frames are processed at a rate of 10.5 per second. The
camera driver provides on-board depth map alignment to the RGB images and all
data is at a resolution of 640x480px. Images for the day dataset were extracted from
the camera feed at 0.5 second intervals, then 350 were manually selected to form a
representative dataset. Frames that did not contain plums, were excessively blurry,
or similar to existing frames were not selected. Colour balance, distance to the trellis,
and number of targets were not considered when selecting frames. This process was
repeated for data gathered at night. These two datasets of 350 images each are then
manually labelled with bounding boxes around all visible plums and split into train,
test and validation subsets of 176, 87, and 87 images respectively. A total of 4449
plums are annotated in the day dataset, and 1402 in the night. Fewer plums were
seen at night due to the light source not fully penetrating the canopy.

Between pick attempts, the camera is positioned approximately 70cm from the trellis
for a global view of the trellis area being picked. Because the target position estimates
are continuously updated from all sensor frames, the object detector must be robust
to both near and far viewpoints of fruit, as seen in the dataset.

Many of the gathered images exhibit numerous artefacts directly related to the har-
vesting task. Some of these are caused by the camera motion as it moves from the
global pose to harvesting a fruit. This results in a wide range of distances, bounding
box sizes and illumination changes, as seen in Figures 4.3 and 4.4. Most images also
include part of the gripper, a design trade-off necessary to minimise the camera and
gripper footprint. Exposure and white balance are handled automatically by the cam-
era driver and must be variable to deal with changing light conditions throughout the
day. Occasionally, this results in extremely mis-exposed or mis-coloured images which
the system should be tolerant to and are present in the datasets in small numbers.

Depth imagery is required for localising the fruit after they have been detected. Be-
cause this sensor modality is already present and is increasingly common among



4.2 Study: Object Detector Comparison 64

Figure 4.3 – Example RGB, RGBD overlay and depth images from the day dataset.
Including effects specific to harvesting motion such as large illumination, object
size and obscuration changes. Depth images shown after clipping is applied.

automated agricultural platforms, the fusion of RGB and depth data was tested. To
create the RGBD dataset, each annotated RGB image has a corresponding depth
image included as a separate file. Depth data suffers from holes where the range is
out of sensor limits, shadowing where a point is obscured for one of the IR stereo
pair used to calculate depth, and also from smoothing effects in the depth calcula-
tion algorithms. Various methods have been proposed to overcome these limitations,
however, for simplicity, the depth data is only normalised and clipped before being
used in network training. Clipping occurs by setting values below 0.11m, where the
camera can return incorrect readings, to be zero and values above 2.5m to be 2.5m.
All depth readings are then divided by 2.5m to produce a pixel range from zero to
one. At short ranges, many depth errors are still present, seen in Figure 4.3 column
3.

The datasets are formatted to match the Pascal visual object classes (VOC) 2007
standard from Everingham et al. (2010). The two RGBD datasets and trained models
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Figure 4.4 – Example RGB, RGBD overlay and depth images from the night dataset.
Depth performance is improved at night with better defined object edges and less
smoothing effects. Depth images shown after clipping is applied.

for these are made available online8.

RGB Network Architectures

Four commonly used object detector networks were chosen for evaluation; Faster-
RCNN, YoloV3, RetinaNet and CenterNet. The first three use Keras implementa-
tions, while CenterNet is in PyTorch. These span a range of target frame rates and
all lie on, or close to, the outer edge of the speed-accuracy curve for the standard
computer vision dataset common objects in context (COCO) from Lin et al. (2015).
This can be seen in Table 4.1.

Faster-RCNN, from Ren et al. (2017), is the only two-stage detector tested, an ap-
proach which shows improved accuracy over single stage detectors, at the cost of
slower inference times. YoloV3 is a single-stage detector used in many existing works
looking at object detection for agriculture, and remains a competitive detector for high

8http://data.acfr.usyd.edu.au/Agriculture/PlumDetection/
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frame rate applications. Updated versions of Yolo are also available, see Bochkovskiy
et al. (2020). The Yolov3 version tested here is separate to the original C embedded
implementation used during the field trial.

Lin et al. (2020) present RetinaNet. This implements the concept of focal loss which
alters the loss function to downweight the impact of easy negative examples, where
there are clearly no objects within the bounding box. CenterNet, by Duan et al.
(2019), is the newest and largest network tested. A one-stage approach is used to
predict heat maps of where bounding box corner and center points lie.

Network Backbone Input Size
(pix) COCO APM Inference Time

(ms)
Faster-RCNN VGG-16 600xN 34.7 250
YoloV3 DarkNet-53 416x416 33.0 29
RetinaNet ResNeXt-101-FPN 800xN 40.8 198
CenterNet Hourglass-104 511x511 47.0 340

Table 4.1 – The originally published COCO average precision metric for each object
detection architecture. Additionally, the reported model inference time, although
each model uses different GPU hardware, so these are only roughly comparable.
Faster-RCNN figures are from Huang et al. (2017) who note that model speed is
highly dependent on the number of box proposals. Faster-RCNN and RetinaNet
resize the input to make the short image edge match the stated value.

All of the precise training configurations applied to these networks during benchmark
testing can also be found at the dataset web page.

RGBD Network Architecture

Two forms of information fusion, early and late, are commonly presented in the
literature. Both are tested here using the RetinaNet architecture against an RGB-
only baseline.

Early fusion refers to concatenating the depth information as an additional input
channel, in our case this makes the network input a 480 × 640 × 4 tensor, prior to
resizing. Early fusion is easily implemented and does not significantly increase com-
putational requirements, but shows mixed results in the literature, often performing
worse than RGB alone. Figure 4.5 shows the early fusion network.
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Figure 4.5 – The early RGBD fusion network using the ResNet-101 backbone, adapted
from Lin et al. (2020) and identical to their implementation apart from the input
layer shape. B is the batch size, A is the number of anchors, there are a total of
5 feature pyramid network (FPN) levels used which are numbered 3 to 7 to match
the above mentioned paper.

Late fusion runs a pair of feature extractor backbones and FPNs, on the RGB and
depth data in parallel. At each of the 5 FPN scales, features from the RGB and depth
FPN outputs are channel wise stacked before being passed through a 1x1 convolution
which performs pooling over the RGB and depth feature maps. This reduces the FPN
channels to 256 so the classification and regression subnetworks are identical to the
RGB-only case. The overall network size is slightly less than doubled. Addition of an
extra backbone creates more informative features which can be learned specifically for
the depth modality, at the cost of additional complexity and execution time. Depth



4.2 Study: Object Detector Comparison 68

data has a meaningful absolute value and is pre-normalised to a fixed range, so batch
normalisation layers are removed from the depth backbone.

Figure 4.6 – The late RGBD fusion network, adapted from Lin et al. (2020). The
backbone and FPN is duplicated, output features from this are channel wise stacked
and passed through a 1 × 1 convolution to reduce the channels back to 256. The
same two subnets as Figure 4.5 are then applied.

Training & Testing Details

All object detection networks can be improved through careful hyperparameter tun-
ing. To provide a fair comparison, and because many application areas lack the
resources for extensive network tuning, each architecture is trained using the default
parameters provided by the authors. For YoloV3 and CenterNet, these were found us-
ing the COCO dataset, while Faster-RCNN and RetinaNet were primarily developed
using Pascal VOC.

Modifying the default anchor sizes to match the mean plum size for the dataset, with
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anchor proposals both larger and smaller than the mean, was found to be counterpro-
ductive for all networks. So default anchor sizes are used. All architectures do some
form of data augmentation by default, specifics of which can be found at the public
link provided. Networks are trained until the validation loss plateaus. All inference
time results were achieved using an Nvidia GTX 1080Ti and the training batch sizes
are set to the maximum that can fit on this GPU.

Transfer learning refers to using weights from an already trained model as the starting
point for training on the day and night plum datasets. All networks are tested both
with and without transfer learning.

All results are processed using the official VOC2007 Matlab development kit. Eval-
uation is done by plotting the precision-recall (PR) curve and reporting the average
precision metric (APM) of Everingham et al. (2010), with a bounding box intersection
over union (IOU) threshold of 0.5.

Depth data is absolute in nature and relating scene geometry to image data requires
the camera focal length. So, to preserve correlated features between RGB and depth
inputs, a fixed focal length should be used. This prevents the use of image re-scaling
and the augmentations, such as cropping, translation and rotation, which rely on it.

For all six RGBD tests, image augmentation is disabled and transfer learning is
applied using ImageNet weights. The dual backbones were found to make late fusion
training unstable so a two step process is required to effectively train this network.
First the depth backbone is frozen and the RGB ResNet, FPN and subnet modules
are trained, then all layers are then unfrozen and the depth backbone is also trained.

4.2.2 Results

Each RGB network is tested against the day and night dataset separately, both with
and without transfer learning. The impact of depth fusion is assessed using the
RetinaNet architecture. The RGBD fusion tests, including the RGB baseline, do not
use data augmentation, whereas all other networks do. All tested configurations are
summarised in Table 4.2 with PR curves for each dataset shown in Figure 4.7.
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Some training runs were unstable, resulting in no validation set APM increase during
training. Each unstable training configuration was tested three times and in all cases
the three runs failed. No training runs failed where an APM value is reported.

Architecture Backbone Configuration Day APM
@0.5 IOU

Night APM
@0.5 IOU

Mean Inference
Time (ms)

Faster-RCNN VGG-16 Transfer Learned 0.691 0.795 128VGG-16 Random Weights 0.537 0.788

YoloV3 DarkNet-53 Transfer Learned 0.597 0.746 56DarkNet-53 Random Weights Unstable 0.608

RetinaNet ResNet-50 Transfer Learned 0.781 0.778 72ResNet-50 Random Weights 0.639 0.744

RetinaNet ResNet-101 Transfer Learned 0.787 0.767 102ResNet-101 Random Weights Unstable Unstable

CenterNet Hourglass-104 Transfer Learned 0.709 0.746 276Hourglass-104 Random Weights 0.456 0.632

Retinanet
RGBD

ResNet-101 Early Depth Fusion 0.608 0.732 109
ResNet-101 Late Depth Fusion 0.745 0.781 143
ResNet-101 RGB Baseline 0.730 0.781 99

Table 4.2 – Results for each object detection network on the day and night datasets.
APM is calculated using the VOC2007 development kit, mean inference time is per
image, not including network loading time.

RGB Only

Over the four baseline networks tested, RetinaNet with ResNet-101 achieved the
highest APM on the day dataset while Faster-RCNN performed the best on the night
data. Transfer learned networks were much more accurate than those trained from
scratch, while also taking less time to train.

YoloV3 was the fastest network by a significant margin, although with lower than
average accuracy. RetinaNet with ResNet-50 provides a good speed-accuracy trade
off for most applications. Data augmentation using the RetinaNet default methods
was effective, as shown by the difference between the RGB baseline from the RGBD
tests and the ResNet-101 transfer learned results.

Faster-RCNN, YoloV3, and CenterNet all performed better on the night dataset.
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Figure 4.7 – The PR curve for each architecture on the day time dataset (left) and
night time dataset (right).

Fixed lighting conditions and fewer visible but obscured fruit should make this an
easier detection task, although there are less training instances available.

RGBD Fusion

Precision-recall curves for the RGBD tests are plotted in Figure 4.7. Early fusion
performed worse than RGB alone, even with other factors such as data augmentation,
being equal. Late fusion slightly outperformed the baseline on both day and night
data. Doubling of the network backbone produced only a 31% increase in inference
time. Many operations such as image pre-processing and bounding box non-maxima
suppression are not dependent on network size.

4.2.3 Discussion

Differences between performance reported on the COCO dataset, and the two datasets
tested, were surprising. CenterNet performed poorly on both plums tasks, despite
having the highest stated COCO accuracy, it was also the slowest. RetinaNet was
effective for day time detection, with augmentation, transfer learning and backbone
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Figure 4.8 – The PR curve for the three RGBD fusion approaches on both datasets.

size all playing a role in overall performance. Direct comparison to existing works
is not possible, owing to the lack of standardised datasets for fruit detection during
harvesting.

Applying transfer learning had an overall larger impact than architecture selection
and is essential when using small datasets, as in many agricultural applications. Con-
versely, using the ResNet-101 backbone significantly increased RetinaNet processing
time, for only a small benefit in precision. Design decisions such as these can play
a more essential role than architecture choice, and should be carefully considered.
Additional factors, such as dataset and batch size, are not investigated in this work
but typically also have an impact on accuracy.

Faster-RCNN outperformed both more modern and slower networks on the night
dataset, in contrast with the daytime performance. Fortuitous hyperparameter de-
faults may be a contributing factor, though properly exploring these for all 10 RGB
configurations is not feasible. This result highlights the importance of testing a range
of network types on application-specific data, such as harvesting under controlled
lighting. High intensity strobe lighting should be trialled to reduce variability during
the day and night time blurring, the floodlight tested was not bright enough to be
seen in images during daylight.
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Early data fusion was counterproductive for these datasets, and performed worse than
RGB alone, as shown in Table 4.2. Although late data fusion was effective, the gains
from this method were less than that provided by data augmentation, and expanding
the RGB dataset size would likely be significantly more useful than incorporating
depth information. Additionally, longer ResNet backbones can be constructed, and
typically show a small APM improvement over ResNet101. So the additional network
capacity introduced by the late fusion approach may be better used as a longer RGB
only backbone.

Predicting the full extent of partially obscured fruit is important for accurately esti-
mating the fruit centroid and directing the gripper to this. All of the tested networks
were able to accomplish this, based on the 0.5 IOU threshold and visual inspection
of the results. However, no accuracy metric is ideal for all use cases, and the 0.5 IOU
threshold is an arbitrary assessment point commonly used in computer vision. Other
metrics may be more suitable for tasks such as harvesting, where the IOU threshold
required for a successful pick can often be estimated.

Selecting the ideal precision-recall point for harvesting is a complex question that
remains to be answered. Low recall causes fruit to be missed, while low precision may
cause pick attempts on false positives. Future hyperparameter tuning and architecture
optimisation should increase network performance on this task, with the results here
acting as a benchmark and dataset for comparison.

4.2.4 Detector Comparison Study Conclusion

In this study, two datasets gathered during a robotic harvesting trial on 2D trellis
plums were presented, and four deep learning object detection architectures were
benchmarked on these. The fusion of depth information was trialled and found to
be marginally effective for late fusion, although data augmentation provides a larger
performance boost. On the day time dataset RetinaNet was the most accurate, while
Faster-RCNN showed the best average precision for the night time data.

Relative network performance differed significantly to that published for the COCO
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dataset, which is commonly used when making design decisions for applications in
agriculture. Therefore the public availability of a wide variety of application-specific
datasets, such as tree fruit harvesting, is important to future progress.

Which detector to use for future harvesting prototypes cannot be definitively chosen
from this study. The best option is likely to be fruit and growing condition dependent,
without a clear link between established performance on non-agriculture datasets and
harvesting detections. However, the transfer learned versions of both Faster-RCNN
and RetinaNet performed well on the day and night datasets. In future, extensive
parameter tuning of these networks should be explored, along with architecture re-
finements to make them better suited to plum detection for harvesting.

The primary limitation of this work is the relatively small dataset size, which makes
it impossible to test which benchmark networks perform best on very large datasets.
Numerous works have shown a clear correlation between training set size and network
performance for fruit detection, although the exact performance-by-size function is
not linear and varies between architectures. Continuation of this work should involve
additional field trials with more opportunities for object detector data gathering.
Future investigations into accuracy metrics specific to tree crop harvesting, multi-
view detection and multi-spectral imaging would also be beneficial.

4.3 Target Tracking

Once fruit are detected in image frames, pose estimation is run on these to yield
3D target positions. Each position estimate is then filtered and tracked using an
Extended Kalman Filter. An additional step to remove false detections is then ap-
plied. The presence of depth information and already known camera pose, allows
simplified target association using nearest euclidean distance, rather than image re-
projection distance. This also motivates the use of an EKF for feature space tracking,
although other filter types are well suited for image association and tracking, such as
the Kanade–Lucas–Tomasi formulation.
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Each object detection consists of an RGB bounding box with centroid (u, v), confi-
dence score and image-aligned depth map. Pose estimation first removes detections
below a set confidence, then estimates the depth value of the target centroid for each
fruit of n, then uses this to project it into a 3D pose xn, yn, zn. Each pose is tracked
within the EKF state vector which is updated by each new frame, resulting in con-
tinuous tracking which updates at an average rate of 10.5Hz. When a fruit is selected
for harvesting, the most recent state estimate is read from the EKF and used for
motion planning. Target motion was not found to be significant during the field trial,
so no motion prediction is required. This is summarised in Algorithm 4.1 where ŷ is
the EKF state which tracks each fruit position, Σ is the target state covariance with
initialisation value Σ0 and RGBBoundingBoxRegion denotes the RGB image patch within
the bounding box extents.

Algorithm 4.1: Target Localisation
Input: RGBD stream
Output: ŷ
ŷ = ∅;
Σ = ∅;
while new RGBD frame do

(bounding box, confidence) ← Yolov3(RGB);
for bounding box where confidence > threshold do

image patch ← RGBBoundingBoxRegion;
binary fruit patch ← HSV(image patch);
d = median(DepthMapBinaryFruitPatch) + fruit radius;
/* If the depth is valid */
if camera velocity < threshold and d < maxd and d > mind then

point ← deproject(bounding box, d, camera pose);
observation ← associateToTarget(point,ŷ);
if no association then

ŷ ← ŷ ∪ point;
Σ← Σ ∪ Σ0;

else
ŷ,Σ← EKFUpdate(observation, ŷ,Σ);

ŷ,Σ← RemoveFalsePositives(X, ŷ,Σ);
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4.3.1 Pose Estimation

Obscured fruit are a problem for this system when naively extracting the depth value
for a bounding box. Even with accurate box extents, a spherical fruit will only take
up π

4 of the depth map for those pixels. This means using the mean or modal depth
value for the entire bounding box is unlikely to work for even slightly obscured fruit.
To further restrict which pixels are considered when estimating fruit depth, a highly
tolerant HSV filter is applied to the RGB region within the bounding box. This
combines the robustness of deep learning detections with the speed and simplicity of
HSV thresholding. In practice, calculating depth as the median of HSV thresholded
depth map pixels proved to be much more effective than using the full bounding box.
For cases where the HSV filtering fails, the bounding box centroid point depth is
used.

To increase processing speed, the RGBD input is downscaled from 640x480 to 320x240.
Deprojection of the point occurs in the world frame, so requires parsing the frame
transformation tree. This is built using the UR arm encoders and the platform track-
ing camera. While the former is highly accurate, the latter does fail in some cases.
When platform position estimates are wrong, all targets in ŷ get shifted and most will
be treated as false positives and slowly removed. Because of the arm-in-hand config-
uration, all grasps are based on current camera frame observations, so this does not
present a problem for actual harvesting. However, it does cause the farm scale fruit
yield map to be inaccurate. Adding an absolute positioning sensor, such as global
positioning system (GPS), would fix this in future.

Depth readings beyond a maximum or below a minimum will be inaccurate and are
ignored. Camera motion is also checked when taking observations and detections
during high linear or angular velocity are ignored. Inaccuracies from motion occur
due to transformation tree lag, as this takes some time to update, and due to camera
blurring. Each fruit object in ŷ also has properties stored in a corresponding data
structure, external to the EKF. This allows ripeness, health, size, visibility, and other
traits relevant for growers, to be easily recorded for later use.
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4.3.2 Extended Kalman Filtering

The extended Kalman filter framework is applied here to iteratively track fruit posi-
tions, but also later for camera pose estimation and in the context of active perception.
To support these later sections, the general EKF form is first presented, then details
specific to static fruit tracking are described. The state vector of fruit positions is
denoted xk, while yk is the camera pose state vector, both of these are modelled using
a nonlinear function with additive noise

xk = f(xk−1) + wk

yk = f(yk−1, uk) + wyk

(4.1)

where uk is a known input and the k subscript is a discrete time index. This section
uses xk to denote a generic system state vector, with yk later used for camera pose
and xk for fruit pose. The transition function f(·) must be linearised when calculating
filter gains, this Jacobian is denoted A and defined for x as

Ak = ∂f(·)
∂x

∣∣∣∣
x=x̂k

(4.2)

with a similar definition for y linearised at y = ŷk. The observation function h(·) is
used to relate state vectors to sensor readings zk using

zk = h(xk) + vk (4.3)

where wk and vk are uncorrelated white Gaussian noise with corresponding covariance
matrices Q and V . The Jacobian of h(·) is denoted H. The filter initialisation x0 is
distributed as

x0 ∼ N (x̄0,Σ1|0) (4.4)
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With these models in place, the EKF prediction step, which occurs once per k itera-
tion, is used to forward predict the state vector and covariance matrix Σ of this,

x̂k = f(x̂k−1, uk) (4.5)

Σk = Ak−1Σk−1A
T
k−1 +Q (4.6)

Filter innovations are the difference between the expected observations from the cur-
rent state, and those received from sensors

ϕ̄k = zk − ẑk|k−1 (4.7)

Likewise, state estimate error is calculated using

εk = xk − x̂k (4.8)

If an observation also occurs during a given prediction time step the EKF update
step is run to calculate the filter gain K, this is used to update the state vector and
covariance

Kk = ΣkH
T
k (HkΣkH

T
k + V )−1 (4.9)

x̂k = x̂k +Kϕ̄k (4.10)

Σk = (I −KkHk)Σk (4.11)

This generic EKF form is applied to target tracking of 3D fruit locations by using yk
as the filter state with known camera poses xk. These are constructed as
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ŷk =
[
x1 y1 z1 x2 y2 . . . zn

]T
xk =

[
XC Y C ZC φ α ψ

]T (4.12)

for n fruit being tracked, where [x1, y1, z1] are the world frame coordinates of the first
fruit being tracked and xt defines the transform from the world to camera axes and is
known from the robot arm joint encoders. With static targets Equation 4.1 becomes

ŷk = I3n,3nŷk−1

Σk = Σk−1 +Q

(4.13)

Both Q and V are assumed static and the observation function h(·) is the pinhole
camera model. In practice, H is calculated using differentiation by complex parts.
When a new detection zk = [xC , yC , zC ]T is processed, target association occurs by
comparing the pose to each element of ŷk. If the minimum Euclidean distance from
zk to a point in ŷk is less than a set threshold, it becomes associated with that state
element. Updates occur using Equations 4.9 - 4.11, with ŷk in place of x̂k.

As in Algorithm 4.1 each EKF update is done for a single target observation, zk is
stacked n time to form a vector matching ŷk in size. The Kk matrix has elements not
corresponding to the current target index, found through the target association step,
zeroed out. The following noise matrices are used, these change size with ŷk as new
targets are added.

Q = 0.01× I3n,3n

V = 0.02× I2n,2n

Σ0 =


0.05 0 0

0 0.05 0
0 0 0.1

 ,

(4.14)

The predict step of (4.5) and (4.6) is run once per RGBD frame, so is dependent on
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the sensor frame rate. Variable loop rates are typically a problem for EKF filtering,
but the static motion model in (4.13) means this is less of an issue. The update
step occurs for each target observation, so false positive detections typically receive
a single update, while easy to detect fruit are updated many times.

One disadvantage of this approach is the state vector length, and thus filter complex-
ity, increases as new targets are observed. EKF steps are relatively efficient to begin
with, so this was not a problem during field trials. Complexity in very large orchards
can be managed using sub-maps, such as one per crop row.

Another limitation is the static target motion model with additive noise. Wind and
trellis movement results in difficult to predict but consistent target motion with peri-
odic components. Estimation of this could improve filtering performance in future but
removes some of the beneficial properties of a static target motion model, including
tolerance to EKF loop rate changes and those described in Section 4.5.

False positive detections are removed as a separate function once per RGBD frame,
following each EKF update step. The predicted image frame position for each target
h(ŷt) is reused from (4.7). Most of these will fall outside the current camera frame,
for the set of those which should be visible, but do not have an associated observation
in that frame, an unseen counter is incremented. Targets with an unseen value above
a limit are assumed to be false positives and removed from ŷ and Σ. With a 10.5Hz
frame rate, using the default limit value of 3, false positives are typically present for
0.3s.

4.4 Study: Improving Visual Servoing Using Au-
tocovariance Least Squares

Selecting the noise matrices Σ0, Q, V when constructing an EKF is often done ad-hoc,
with guessed values using trial and error. This leads to sub-optimal filter performance
which makes pose estimates less accurate and can reduce grasping performance, as
identified in Rajamani and Rawlings (2009). Autocovariance least squares is a recent
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correlation based method for principled noise covariance (NC) estimation. Visual
servoing has many robotics applications. In the harvesting prototype, IBVS is used
for final gripper approach, while the target tracking EKF is a form of PBVS, which
is also explored in Section 4.5 for active perception localisation. Better estimates for
NC matrices could improve all of these system components. To investigate this, a
study is conducted on applying the autocovariance least squares (ALS) method to
PBVS. For simplicity, and to make the results as widely applicable as possible, the
generic PBVS case for a known tabletop object is considered. While the harvesting
system uses IBVS rather than PBVS for final approach control, and direct Euclidean
pose filtering for localisation, the same ALS technique could be applied to both of
these filtering tasks with minor adjustments to the state transition and observation
models. This thesis section is a summary of work presented in Brown et al. (2019)
and Brown et al. (2020), for more details please see these papers. Figures and tables
in this section are also adapted from these.

In this study, ALS is applied to position based visual servoing pose estimation under
the extended Kalman filter and moving horizon estimation frameworks, with Gaussian
noise assumptions. The ALS method works by formulating a least squares optimisa-
tion problem which minimises the difference between the expected and actual inno-
vation autocovariances. To do this, a sub-optimal filter with gain L is constructed
and run to generate L-innovations, along with steady state data. For an optimal
Kalman filter the innovations sequence is white, see (Anderson and Moore, 2012,
chp.9). However the L filter is sub-optimal due to the NC choices, so the innovations
will be self-correlated. Using the ergodicity of this process and the autocorrelations
matrix, the least-squares optimisation problem is constructed according to Odelson
et al. (2006). Selection of the initial L gain will impact the NC estimate variance and
Duník et al. (2017) provide a means of choosing L.

The PBVS estimation goal is to recover the camera pose given image frame detections
of known points on an object, it can also be applied to the inverse case for object
pose estimation. Filtering techniques are applied to compensate for noisy feature
tracking data. Under the assumption of constant camera motion for each sample
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interval, an LTI model can be used. The camera state in Equation 4.12 is augmented
to a 12 dimensional vector of xt, and the derivatives of that. This augmented state
is denoted x̃. As in the previous section, the pinhole camera observation model is
used. To apply an EKF, the object feature point projection is linearised about the
current state estimate for each step. Interactive results files and code for this study
are available.9

4.4.1 ALS Notation

Within the ALS study section [a1, · · · , an] denotes the stacking of an scalars, vectors
or matrices as [aT

1 · · · aT
n ]T. The property (ABC)s = (C>⊗A)(B)s for stacked matrices

is used and (·)ss is the column-wise stacked lower triangular elements of a symmetric
matrix. As shown in Rajamani and Rawlings (2009), the full column rank duplication
matrix Dr ∈ Rr2× r(r+1)

2 can be constructed which contains only zeros and ones, and
satisfies (Q)s = Dr(Q)ss.

4.4.2 Preliminaries

The pinhole model from Section 3.9 is used for camera modelling. Frames of reference
are defined as (XC , Y C , ZC), (XO, Y O, ZO), (uC , vC) for the camera, object and image
plane respectively.

For a point in the object frame PO = [PO
X , P

O
Y , P

O
Z ]T the projection to a point PC =

[PC
u , P

C
v ]T in the camera (uC , vC) frame is given by

 PC

1

 = C
[

ROC TOC

]  PO

1

 (4.15)

where TOC and ROC are translation and rotation from the object to camera axes.
A calibrated camera is assumed, so C is known, while object feature points PO

9https://github.com/jaspereb/ALS_MHE_Results
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Figure 4.9 – Projection of object feature points into the camera coordinate frame

come from a computer aided design (CAD) model and PC points are obtained as
observations from the camera. With 6 unknown state parameters in TOC and ROC ,
and 2 nonlinear equations to constrain these, a minimum of 4 non-collinier and non-
coplanar feature points are required. Additional points will improve noise tolerance
and increase the likelihood that more than 3 are visible from a given pose.

Unlike for the fruit tracking case, the target y is assumed fixed at the world frame
origin and the EKF estimates a 12 element camera pose x̃

x̃ =
[
X Ẋ Y Ẏ Z Ż φ φ̇ α α̇ ψ ψ̇

]T
(4.16)

x̂ is used to signify the filter estimate of x̃. As in Wilson et al. (1996) and Janabi-
Sharifi and Marey (2010), a step wise constant velocity model allows for a simple
state transition model of

x̃k+1 = Ax̃k + wk (4.17)

for k = 1, · · · ,M where M is the total number of data points, and A ∈ R12×12 is the
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block diagonal matrix

A =



Ae 0 . . . 0
0 Ae 0 0
... 0 . . . ...
0 0 . . . Ae

 , Ae =

 1 T

0 1

 (4.18)

T is the time interval between filter iterations. The non-linear measurement model
comes from (4.15),

zk = h(x̃k) + vk (4.19)

with zk ∈ R2p×12 where p = 6 is the number of feature points. The system initial
state is assumed to be sampled as x̃0 ∼ N (x̃0,Σ1|0), with wk and vk being zero-
mean uncorrelated Gaussian noise with corresponding covariance matrices of Q and
V . These are positive semi-definite and statistically independent from x̃0. The set of
(Σ0, Q, V ) forms the EKF noise covariance matrices.

4.4.3 State Estimation for PBVS

The extended Kalman filter is a commonly used estimation method, being an efficient
and easy to implement online technique. Kalman filtering is optimal for the linear case
with Gaussian noise, but is formally the single Newton step version of full information
estimation (FIE). Applying either FIE, or the windowed version of this, moving
horizon estimation (MHE), will give better predictions of x̃t. In this study, both
estimation approaches are tested for generating the initial L-gain ALS data.

The Extended Kalman Filter

Building on the EKF definition from Section 4.3.2 the L-gains sub-optimal filter
is constructed. With the actual initial state and NC matrices unknown, guessed
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values for these ˆ̃x1|0,Σg, Qg, Vg are used, these are also inputs to the ALS process.
H is obtained by applying the linearisation method in (4.2) to h(·) to generate the
approximate LTV model in discrete time

zk ≈ Hk(x̃k − x̂k) + vk (4.20)

The initial L gains filter can then be constructed using the EKF prediction and update
steps in Equations 4.5 - 4.11. Following Rajamani and Rawlings (2009), the Āk, Ḡk

and w̄k matrices are defined for convenience

Āk = A− ALsok Hk

Ḡk =
[
In −ALk

]
w̄k =

[
w>k v>k

]>
(4.21)

Estimation error and observations can then be expressed in terms of realised noise
values

εk+1 = Ākεk + Ḡkw̄k

ϕk = Hkεk + vk

(4.22)

To apply the ALS method using this EKF, the A and H matrices are assumed uni-
formly detectable, and the filter is exponentially stable in k = 1, · · · ,M meaning the
expected value of the state estimate error goes to zero as k approaches infinity.

Moving Horizon Estimation

While Kalman filtering is optimal for linear systems under Gaussian noise, more
advanced techniques such as full information estimation perform better when these
conditions do not hold. Computational complexity is a problem for FIE and increases
with M , but by windowing the length of previous data considered, moving horizon
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estimation can overcome this. Using the standard form in Ge and Kerrigan (2017)
MHE can be described as

Θ∗k̄ = min
Xks,k̄

‖εks‖2
Σ−1

ks

+
k̄−1∑
k=ks

‖wk‖2
Q−1

g
+

k̄∑
k=ks+1

‖vk‖2
V −1

g
,

s.t. x̃k+1 = Ax̃k +Gkwk, k = ks, . . . , k̄,−1,

zk = h(x̃k) +Hkvk, k = ks, . . . , k̄,

(4.23)

in which the data window length is Nl and ks := max{k̄ −Nl, 0}+1 with k̄ = 2, ...,M
being the current filter time step. The optimisation variable Xks,k̄ is the sequence of
states, which may have constraints imposed, within the data window. The Σks values
come from the previous EKF run in (4.11). The MHE estimator is used to generate
the Xks,k̄ state estimates which are applied to Equations 4.6, 4.7, 4.9 and 4.11 to
generate the ALS input data (Kk, Hk, ϕk).

4.4.4 The ALS Method for Noise Covariance Estimation in
PBVS

For the above L gains filter, the correlations of ϕ1, ϕ2, · · · , ϕM are non-zero and the
auto-covariance of ϕk over j = 0, 1, . . . , N − 1 time lags can be calculated as

Cj(ϕk) = E[(ϕk+j − µk+j)(ϕk − µk)>] = E[ϕk+jϕ
>
k ]− µk+jµ

>
k (4.24)

which is presented in Odelson et al. (2006) and where µk+j = E[ϕk+j]. The ALS
parameter N is the maximum number of time lags considered.

For given observations (zk)k̄k=1 over the entire data window k̄ ≤ M , assume the
existence of an initial state x̂1|k̄, where x̂1|k̄ = E

[
x̃1|(zk)k̄k=1

]
which can be found

through smoothing. If this smoothed initial state is used for filter initialisation such
that x̂1|0 = x̂1|k̄, then E [ε1] = 0.
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The state error εk+1 is a function of ε1 and (w̄k)Mk=1. Because E [ε1] = 0, Equation 4.24
simplifies to

∀ k, j : µk+j = 0 =⇒ Cj(ϕk) = E[ϕk+jϕ
>
k ] (4.25)

For a window of innovations (ϕk+1)Nz
k=1, where Nz = Me − N + 1, the lagged auto-

covariance is

Cj

(
(ϕk+1)Nz

k=1

)
=
[
Cj(ϕ2) · · · Cj(ϕMe−N+2)

]
(4.26)

in whichMe defines the data length used for estimation and it is assumed N �Me ≤
M . The auto-covariance matrix R can then be defined as

R =
[
C >0

(
(ϕ>k+1)Nz

k=1

)
· · · C >N−1

(
(ϕ>k+1)Nz

k=1

)]
=
[
R0 R1 · · · RMe−N

] (4.27)

and

Ri = E
[
ϕ>2+iϕ2+i · · · ϕ2+iϕ

>
N+1+i

]>
(4.28)

in which i = 0, · · · ,Me−N . This auto-covariance matrixR is a function of (Σ1, Q, V )
meaning the expected value ofR for given (Σ1, Q, V, ) can be determined. Using actual
process measurements, the observed innovations ϕ̄ can be calculated using (4.7) and
the observed auto-covariance matrix R̄ is estimated from data as

R̄ =



ϕ̄2ϕ̄
>
2 · · · ϕ̄Me−N+2ϕ̄

>
Me−N+2

ϕ̄3ϕ̄
>
2 · · · ϕ̄Me−N+3ϕ̄

>
Me−N+2

... . . . ...
ϕ̄N+1ϕ̄

>
2 · · · ϕ̄Me+1ϕ̄

>
Me−N+2

 (4.29)
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Generally, the ϕ sequence coming from model (4.22) is non-stationary. However,
with an ergodic process, R̄ can be accurately approximated from observations. By
combining the analytic form of R from (4.27) with R̄ calculated from actual data, an
unconstrained least squares problem can be established to estimate the true covariance
matrices

(Σ̂∗1|0, Q̂∗, V̂ ∗) = arg min
Σ̂1|0,Q̂,V̂

∥∥∥∥R(Σ̂1|0, Q̂, V̂ )− R̄
∥∥∥∥2

F
(4.30)

Ge and Kerrigan (2017) has shown that R can be composed as

R(Σ1|0, Q, V ) = Γ
(
INz ⊗ Σ1|0

)
Γ̄> + Ω

(
INd
⊗Q

)
Ω̄>

+Φ
(
INd
⊗ V

)
Φ̄> + Ψ

(
INz ⊗ V

)
Ψ̄>

(4.31)

The least squares problem in 4.30 requires vectorising R̄ and R as

(Ri)s = (Γ̄i ⊗ Γi)I1,n(Σ1|0)s + (Ω̄i ⊗ Ωi)Ii+1,r(Q)s

+[(Φ̄i ⊗ Φi)Ii+1,q +Hi+2 ⊗Ψi](V )s

(4.32)

where the definitions for Γ̄,Γ, Ω̄,Ω, Φ̄,Φ, Ψ̄ and Ψ are given in Rajamani and Rawlings
(2007). R̄ is similarly vectorised as b̄ = (R̄)s. While (4.30) is an unconstrained
optimisation problem, the positive semi-definiteness, a required property for accurate
NC matrices, of (Σ1, Q, V ) can be guaranteed by enforcing Σ̂1|0, Q̂, V̂ � 0 during
optimisation. Adding this constraint results in the central ALS problem

min
ϑ

∥∥∥A ϑ− b̄
∥∥∥2

2
s.t. Σ̂1|0, Q̂, V̂ � 0 (4.33)

in which

ϑ =
[

(Σ̂1|0)ss (Q̂)ss (V̂ )ss
]T

(4.34)
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The definition of A is found in Ge and Kerrigan (2017). This can be solved as an
SDP problem using CVX (Boyd and Vandenberghe, 2004; Grant and Boyd, 2013,
chap. 4).

The ALS optimisation problem in (4.33) grows rapidly with i due to the Kronecker
products, quickly making it infeasible for large Me. Memory efficient versions of
this are developed in Ge and Kerrigan (2017). One approach uses the property
(A ⊗ B)(C ⊗ D) = AC ⊗ BD from (Bernstein, 2009, chap. 7) to decompose the
permutation matrices in 4.32 into smaller Kronecker product sums. Equation 4.32
becomes

(Ri)s =
i+1∑
j=1

(
Γ̄iζ Γ̄

j

)
⊗
(
ΓiζΓ

j

)Dn(Σ1|0)ss

+
i+1∑
j=1

(
Ω̄iζ

Ω̄
j

)
⊗
(
Ωiζ

Ω
j

)Dr(Q)ss

+
i+1∑
j=1

(
Φ̄iζ

Φ̄
j

)
⊗
(
Φiζ

Φ
j

)
+Hi+2 ⊗Ψi

Dq(V )ss

(4.35)

in which (.)ss is the stacking of symmetric matrix lower triangular entries and D is
a duplication matrix with the property (.)s = D(.)ss. Other symbols are defined
in Brown et al. (2020).

4.4.5 Experiments and Results

Simulation Experiments and Results

A V-REP simulation is run of a Microsoft Kinect V1 mounted on a UR5 arm with a
simple target object in frame, as shown in Figure 4.10. Five coloured markers are fixed
at known locations and the arm follows a set trajectory. Ground truth and simulated
camera frames come from V-REP, an HSV filter extracts centroid observations zk
from the camera frames which then have noise added. Both a linear and non-linear
trajectory are tested. The L gains filter is constructed using a grid search over NC
values to find the minimum mean state error.
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Figure 4.10 – VRep simulation of the position based visual servoing scenario used to
run simulated ALS experiments

Data lengths of Me = 70 and N = 20 are used to construct R̄ in (4.29). To reduce
the impact of Σ0 choice, the first 50 time steps are discarded, allowing the filter to
converge. Then the ALS optimisation in (4.33) is repeatedly solved for a moving
window of length 50. All M = 1450 data points are covered by these windows,
yielding 28 total segments, each with a separate Q̂ and V̂ estimate. The elementwise
mean of these is calculated and used to construct the predicted optimal EKF, denoted
the ALS-EKF. Exact values for the L gain filter and ALS estimates of NC matrices
can be found in Brown et al. (2020).

Diagonality constraints for Q̂ and V̂ are enforced by solving (4.33) as an semi-definite
programming (SDP) problem. Additional structure can be easily enforced by spec-
ifying desired CVX constraints. Figure 4.11 displays the true states and both filter
estimates for a segment of the first experiment. Numerical results for that experiment
are in Table 4.3 which shows the ALS tuned EKF improved RMS position and angle
errors by 33.1% and 50.5%, respectively.

The non-linear trajectory showed similar improvements to the first experiment as seen
in Table 4.4, with position and angle estimate improvements of 38.5% and 34.5%.
Violations of the constant velocity model appear as increased ALS estimates of the
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Figure 4.11 – The estimated states and ground truth for the first 5 seconds of simulated
linear trajectory test.

Filter Type x (mm) y (mm) z (mm) φ (mrad) α (mrad) ψ (mrad)
Mean Absolute Error

L-gains EKF 0.4026 0.3529 1.9380 3.6648 12.3844 8.9688
ALS-EKF 0.1919 0.1983 1.4119 1.9667 6.1530 4.2575

Max Error
L-gains EKF 1.3984 1.3797 6.5636 12.8461 43.0329 30.5378
ALS-EKF 0.7485 0.6775 3.4719 7.3749 27.3873 15.8724

Error Std Dev
L-gains EKF 0.4027 0.3513 1.5518 3.6476 12.3847 8.9711
ALS-EKF 0.1920 0.1935 0.7679 1.9531 6.1232 4.2535

Table 4.3 – Estimation error for both filters on the linear simulation test.

system noise matrix Q̂.

An alternative measure of EKF efficacy is to examine the innovation sequence directly.
For an optimal Kalman filter it is necessary and sufficient that this be white Gaussian
noise. To determine the innovation whiteness, the pixel space innovations of the first
marker are run through a Fourier transform, this occurs for both filters. As shown in
Figure 4.13 the L-gains EKF exhibits a large low frequency peak, while the ALS-EKF
data is closer to the ideal flat distribution.
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Figure 4.12 – The estimated states and ground truth for the simulated non-linear
trajectory test.

Filter Type x (mm) y (mm) z (mm) φ (mrad) α (mrad) ψ (mrad)
Mean Absolute Error

Initial EKF 1.3226 0.7634 1.9533 5.2877 11.9752 8.8000
ALS-EKF 0.5519 0.3701 1.5612 3.5728 8.2918 5.2000

Max Error
Initial EKF 4.6820 1.9997 6.3692 21.3880 41.8449 32.1000
ALS-EKF 4.1088 1.7287 4.9078 19.2321 32.8545 19.3000

Error Std Dev
Initial EKF 1.3230 0.7620 1.5826 5.2715 11.9418 8.8000
ALS-EKF 0.5520 0.3688 1.1690 3.5659 8.2676 5.3000

Table 4.4 – Estimation error for both ALS study filters on the non-linear simulation
test.

Physical Experiments and Results

PBVS tuning using ALS is also assessed using a physical experiment. A checkerboard
target of known size is imaged by a camera fixed to the UR5 arm. A 60 second
trajectory consisting of many curved and linear motions with variable acceleration is
run. To construct the ground truth, the 54 checkerboard corner points are localised
in each image. Total reprojection error is used as the goal for a minimisation problem
to determine camera pose for each frame, followed by a two-point moving average
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Figure 4.13 – The frequency spectrum for the innovation sequence in the non-linear
simulated trajectory experiment. Left and Right are the innovations of image pixel
coordinates u and v, respectively.

filter. The checkerboard centre point and 4 corners are used to build zk.

For the given setup, ALS was found to be numerically sensitive to innovation mag-
nitude. Very small time steps often result in Q̂ values collapsing to zero. The data
frame rate is down sampled to prevent this by keeping one in n sequential images.
Conversely, over downsampling makes the ALS data window longer with greater vio-
lation of the constant velocity assumption and less accurate ALS estimates. A value
of n = 6 is used, corresponding to 0.1 second time steps, practically this can be found
by progressively downsampling data until Q̂ estimates of zero are no longer seen.

To select an N value the innovation correlation coefficients are plotted in Figure 4.14.
Selecting the first local minima around N = 20, appears to be a good experimental
heuristic for N . When this extrema occurs is influenced by the time step length,
actual system behaviour and L-gains filter NC guesses. A coarse grid search over
L-gains EKF NC parameters resulted in the Table 4.5 parameters.

Similar to the simulation experiment, constant values are assumed for Q̂ and V̂ ,
determined as the mean over sliding window estimates. ALS theory suggests that
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Figure 4.14 – The correlation coefficient for innovations on the first 5 measurement
vector elements, generated by the initial-EKF. The x axis shows varying numbers
of lagged time steps.

Parameter N Me n W Nl Qg Vg x̂1|0

Value 20 21 6 28 4 10−6 × I12 10−4 × I10 See Below

Table 4.5 – Key autocovariance least squares experiment parameters

Me � N will yield the best ALS estimate. However for this application the innova-
tion correlations quickly decay to zero, as the constant velocity model is violated in
inconsistent ways for longer time periods, meaning larger Me windows will only add
noise and computational complexity. To balance the assumed constancy for Q̂ and
V̂ with non-informative correlations over longer windows, a small window length of
Me = N + 1 = 21 was used and found to be experimentally effective.

Using a small value for Me also has computational advantages but causes larger
variance in the per-window ALS estimates, sometimes resulting in unstable EKF
filters constructed from these. An additional constraint is introduced to prevent this
by enforcing
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Q̂1,1 = Q̂3,3 = Q̂5,5

Q̂2,2 = Q̂4,4 = Q̂6,6

Q̂7,7 = Q̂9,9 = Q̂11,11

Q̂8,8 = Q̂10,10 = Q̂12,12

(4.36)

The initial state estimate used for all tests is

x̂1|0 =
[

0.08 0 0.03 0 0.32 0 0 0 0 0 −π 0
]>

(4.37)

Generating the data used for ALS estimation is a separate problem from applying
ALS NC estimates for filtering, the first of these steps can be done using an EKF or
MHE. Online filtering requires a very efficient framework, and is not always possible
with MHE, so only Kalman filtering is tested for second step. The filter constructed
using L-gains EKF data is denoted EKF-ALS-EKF. While the one which uses MHE
to generate the ALS data, then estimates the NC matrices using ALS and applies
these to an EKF is denoted MHE-ALS-EKF.

Initial state conditions are important to MHE performance, so a two step process is
used. First, MHE is run using the value from (4.37). Then x̃1|0 estimated from that
MHE run is used to initialise a new MHE estimate of the data. This new MHE run
generates the ALS innovations. All moving horizon estimate optimisation problems
use a horizon length ofNl = 4, which is less than the ALS parameterN . Experimental
assessment determined that ALS estimates for V̂ produced worse results than using
the Vg value, so Vg is used in place of the ALS V estimate for the results presented
here. This discrepancy may be caused by how the ground truth is generated, which
uses independent per-frame estimates from the same noisy camera sensor as the filter
data, but with additional points for increased accuracy.

State estimates generated by the L-gains EKF, EKF-ALS-EKF and MHE-ALS-EKF
are shown in Figure 4.15 and enumerated in Table 4.6. Using MHE estimates as input
to the ALS optimisation improved final filter performance by a further 21% over the
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EKF-ALS-EKF case, for a total improvement of 48% over the grid search filter.

Figure 4.15 – The real experiment data estimated states for the initial filter and both
ALS tuned filters, plus ground truth.

Benefits of the efficient ALS implementation are reflected in Table 4.7. The memory
use and computation time were significantly reduced, but ALS remains an offline
method for this scale of problem. MHE is also time intensive for this data length.
Reported total time includes the generation of results figures and running the ALS
tuned EKF.

4.4.6 ALS Study Conclusion

Results obtained from simulation and physical testing show that applying ALS for
noise covariance matrix estimation can improve filter performance on the tested PBVS
task. Using more accurate initial filters, such as moving horizon estimation, to gener-
ate ALS input data, further increased the accuracy of NC estimates. Computational
complexity was effectively minimised using the sliding window approach with an
efficient ALS implementation, while the constant velocity assumption keeps model
complexity low. A heuristic for selection of Me and N is also proposed.
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Filter Type x (mm) y (mm) z (mm) φ (mrad) α (mrad) ψ (mrad)
Mean Absolute Error

L-gains EKF 1.200 1.080 1.103 5.895 5.560 2.523
EKF-ALS-EKF 0.861 0.689 0.688 4.445 4.689 0.806
MHE-ALS-EKF 0.597 0.475 0.586 3.956 4.116 0.587

Max Error
L-gains EKF 7.225 3.581 4.010 17.345 15.676 4.767

EKF-ALS-EKF 4.172 1.785 2.052 10.279 12.780 2.648
MHE-ALS-EKF 2.963 1.430 1.766 10.339 8.982 2.040

Error Std Dev
L-gains EKF 1.199 1.081 1.075 4.857 4.992 2.496

EKF-ALS-EKF 0.862 0.689 0.623 3.057 3.991 0.777
MHE-ALS-EKF 0.597 0.474 0.511 2.412 3.291 0.562

Table 4.6 – Estimation error for all three ALS study filters on the real experiment
data.

For the efficient ALS method with N = 20
Configuration Me = 21 Me = 70 Me = 110

Original ALS Time (sec) 0.69 45 131
Efficient ALS Time (sec) 0.68 24 41

Original ALS Memory (GB) <0.01 4.73 13.6
Efficient ALS Memory (GB) <0.01 0.4 0.6

For the entire estimation process with 28 windows

Configuration Filtering Time
(sec)

ALS Time
(sec)

Total Time
(sec)

EKF-ALS-EKF 0.9 21.9 26.3
MHE-ALS-EKF 824.0 14.3 839.9

Table 4.7 – Autocovariance least squares computation requirements

The NC matrices are assumed to be static, a reasonable but inaccurate simplification
given a constant velocity model. Many camera trajectories, including those in indus-
try, can be partitioned into repetitive segments. During harvesting, the motion can
be delineated into approach, retraction and drop steps. Different ALS NC estimates
could be developed in future for each of these motions by aligning the moving data
window with each motion segment. Even with reduced complexity, ALS remains an
offline method. Some numerical stability issues related to innovation magnitude were
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seen during optimisation.

While the ALS method could provide better NC estimates for the fruit localisation
EKF, performance of that filter using guessed Q, V,Σ matrices was already sufficient.
During the field trial, no pick failures could be attributed to EKF performance, so
development effort was instead dedicated to less reliable system modules, such as
the object detection framework. As the fruit tracking process is improved in the
future through better detections, filter performance may become limiting and ALS
will be considered to improve this. However, determining ground truth to quantify
improvement for the fruit tracking filter is difficult and time consuming.

4.5 Study: Active Perception

The methods described above all require depth information to localise the 3D position
of each fruit. This is provided by the D435i stereo camera, which is not always robust
to outdoor lighting conditions. Estimation of target poses can instead by done using
bearings-only observations from multiple image frames, as an arm mounted 2D camera
approaches the fruit. If used, this technique would allow continuous 3D tracking when
the depth map is inaccurate or unavailable and would improve harvesting system
robustness. This is a basic form of structure from motion, where the image features
to match are object detections and the target geometry is known, so only pose needs to
be estimated. Many techniques exist to solve this task, including particle filtering and
full information estimation. However, the EKF framework is both iterative, allowing
for easy online updates of target positions as the camera moves, and has an explicit
analytical form for the filter uncertainty, namely, the state covariance matrix.

Under the pinhole camera model, each image frame constrains the target to lie along
a ray joining the camera pose to the detection centroid in the optical frame. For
an accurate camera and spherical target of unknown size, the unique intersection
of two rays is sufficient and necessary to locate the target in 3D space, as shown in
Figure 4.16. In practice there will be estimation noise due to errors in the camera pose,
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object detection centroid, pixel discretisation and target movement, so additional
observations are required to reduce estimate error.

Figure 4.16 – Illustration of the AP problem, looking at the top view of a scene with
two possible camera paths x1x2 and x1x3. The first of these reduces uncertainty
in the Y and X dimensions but not Z (blue ellipse), while the latter path trades
some Y uncertainty for much lower Z uncertainty (green ellipse). In this scenario
there is a prior estimate of the target Z range, otherwise the blue ellipse would be
infinitely long.

For an in-hand camera which approaches a fruit along the optical z axis, typically the
most direct path to the target, coincident rays are produced which cannot be used to
estimate the fruit depth z. Instead, a camera path should be selected which provides
a large angular separation between rays to properly estimate z, while keeping the
target in frame. This goal must be balanced with the desire to execute a minimum
time trajectory which ends with the gripper over a target fruit. Choosing an optimal
sensor trajectory for fruit localisation and harvesting is an active perception (AP)
problem, and techniques from this field can provide a principled approach. Code for
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this study is available online.10

4.5.1 Problem Formulation

The problem of choosing an optimal sequence of camera-in-hand gripper poses to
maximise grasp success is considered in both the offline, and online case. Following the
framework, and substantially the notation, in Atanasov et al. (2014) and Schlotfeldt
et al. (2018), models of the camera motion, target motion and predicted observations
are defined. The sensor state model is given by

xt+1 = f(xt, ut)

ut ∈ U
(4.38)

where xt = [x, y, z, qw, qx, qy, qz] is the camera pose at time t, consisting of the 3
DoF position and an orientation quaternion. ut is a single action step drawn from the
set of actions U . This is a constant, 5 element set of position offsets which move the
camera towards the initial target pose estimate in the pattern shown in Figure 4.17.

Figure 4.17 – The set of 5 possible next poses (in red) from a given pose (in blue).
The z axis points to the target position estimate ŷ.

10https://github.com/jaspereb/AP_Experiments

https://github.com/jaspereb/AP_Experiments
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At each camera position, the orientation quaternion is calculated to point it towards
the target estimate ŷ, meaning the state space complexity is reduced from 6 degrees to
3. By using a fixed target location and generating these on a regular grid, calculating
the node dominance criteria for reduced value iteration (RVI) is simplified. After
applying these simplifications and removing dominated nodes, the number of nodes
at a given timestep grows quadratically, rather than exponentially. This is important
for tractability in longer sensor paths.

All experiments are performed for a single target, although the framework is easily
extended to multi-fruit tracking once a target association function is in place. The
fruit targets are assumed to have an identity motion model, making them static with
no additive noise

yt+1 = I3yt (4.39)

ŷt is the current estimate of the fruit centroid location. The pinhole model, described
in Section 3.4.1, is used to generate sensor observations according to

zt = h(xt, y) + vt (4.40)

vt ∼ N (0, V ) (4.41)

where zt is the fruit pixel coordinates. The sensor noise is modelled as constant
magnitude pixel noise, independent of the sensor or target states. Object detector
inaccuracy was the primary noise source observed for fruit position estimation, and is
influenced by camera blur and target size, which is not captured in the noise model.
Incorporating these effects would increase the model accuracy and is an avenue of
future work. Including the transformation from world to camera coordinates, the
pinhole model is
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h(xt, y) = Cfprj(RT
t (y − pt)) + vt (4.42)

fprj(y) = 1
y3


y1

y2

y3

 (4.43)

where p is the first 3 elements of the camera state x, whileR is the camera orientation
expressed as an SO(3) rotation matrix. The projection function fprj is required to
linearise the observation function in the target coordinates. C is the following modified
form of the camera intrinsic matrix

C =

 fx 0 u0

0 fy v0

 (4.44)

Forward value iteration FVI of the state covariance matrix requires the observation
model to be linear in the target state, so h(.) is linearised about the current target
estimate. For the offline case

zt ≈ H(xt)y + vt (4.45)

H(xt) = ∇y=ŷ0h(xt, y) (4.46)

and for the online case

H(xt) = ∇y=ŷth(xt, y) (4.47)

this linearisation for the pinhole camera model is given in Schlotfeldt et al. (2019) as
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H(xt) = Cf ′prj(RT
t (y − pt))RT

t (4.48)

f ′prj(y) = 1
y2

3


y3 0 −y1

0 y3 −y2

0 0 0

 (4.49)

4.5.2 Optimisation Goal

Choosing a set of actions to maximise the final mutual information between the target
state and observations is the overall active perception goal. For fruit harvesting, an
additional termination constraint xT = ŷT−1 is introduced to place the final sensor
pose, and thus the gripper position, at the target. When operating online, the infor-
mation available to plan sensor actions includes previous actions and observations

I0 = z0

It = (z0:t, µ0:(t−1))

(4.50)

given a static target model, the AP goal is

max
µ0,...,µT−1

I(y; z1:T |x1:T )

s.t. xt+1 = f(xt, µt(It)), t = 0, . . . , T − 1

xT = ŷT−1

zt = H(xt)y + vt, t = 0, . . . , T

(4.51)

Under the approximation of a linearised observation model and Gaussian noise as-
sumptions, Atanasov et al. (2014) shows that this maximisation goal reduces to a
deterministic optimal control problem which can be optimally solved offline. The
following goal is equivalent to Equation 4.51 for any monotone concave cost function,
such as the covariance matrix trace
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min
σ∈UT

trace(ΣT )

s.t. xt+1 = f(xt, σt), t = 0, . . . , T − 1

Σt+1 = ρp(ρext+1(Σt)), t = 0, . . . , T

(4.52)

where σ is a camera trajectory, ρex is the Kalman filter covariance update step

ρex(Σ) = (Σ−1 +M(x))−1

M(x) = H(x)TV −1H(x)

(4.53)

and ρp is the Kalman filter covariance prediction step, which is identity in this case

ρp(Σ) = AΣAT +Q = IΣ (4.54)

Applying this simplification to (4.52) yields the Σ update

Σt+1 = (Σ−1
t +H(x)TV −1H(x))−1, t = 0, . . . , T (4.55)

Both trace(·) and log det(·) have been suggested as generic cost functions to reduce
final target uncertainty. However, the goal of this active perception step is to increase
grasp success and not all Σ components contribute equally to this. For this reason,
a weighted trace cost function is proposed here to match target uncertainty to the
gripper positioning tolerance, this results in the optimisation problem

min
σ∈UT

trace(WΣΣT ) (4.56)

where WΣ is the target pose estimate covariance weighting matrix
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WΣ =


WΣx 0 0

0 WΣy 0
0 0 WΣz


s.t. WΣx ,WΣy ,WΣz ≥ 0

WΣx +WΣy +WΣz = 1

(4.57)

This is assumed to be analytically or empirically estimated from gripper geometry
so that sampling the target location according to this distribution maximises grasp
success probability

max
WΣ

p(grasp success|xT , y)

s.t. xT = ŷ

ŷ ∼ N(y,WΣ)

(4.58)

While WΣ will have off-diagonal elements in practice, these are difficult to estimate
directly from gripper geometry. Learning these from large numbers of harvest trials
is a potential area of investigation.

4.5.3 Reduced Value Iteration & Kalman Filtering

Planning an optimal sensor trajectory for harvesting a specific fruit requires solv-
ing (4.52) and a forward value iteration (FVI) tree is the most straightforward means
of doing this. At each camera pose the set of possible actions is iterated over. Each
action yields a new node with camera pose determined by (4.38) and Σ by (4.55).
However, the FVI tree has a large amount of redundant nodes, where multiple nodes
have equivalent xt but different Σt. By removing dominated nodes a still optimal RVI
tree is constructed. Algorithm 4.2 describes this process.

The RVI algorithm builds a full tree where each node contains x,Σ and also a pointer
to its parent node. This allows σ to be reconstructed from a given end node NT .
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Algorithm 4.2: Reduced Value Iteration Tree
Input: x0, ŷ0,Σ0
Output: N0:T
N0 ← (x0,Σ0);
U = generateActionSet(x0, ŷ0);
for t = 1 : T do

forall (x,Σ) ∈ Nt−1 do
forall µ ∈ U do

xt ← f(x, µ);
Σt = ρext

(Σ);
forall (x′,Σ′) ∈ Nt do

if x′ = xt then
if costFunction( Σt) < costFunction( Σ′) then

/* The node is dominating */
(x′,Σ′)← (xt,Σt);
break

else
/* The node is dominated */
break

/* The state is not yet visited */
Nt ← Nt ∪ (xt,Σt)

Because no actions move away from the target position ŷ0, node state overlap will
only occur for successive tree levels Nt and Nt±1. This simplifies node dominance
checking. With the removal of dominated nodes, only a single tree node will exist
where xT = ŷ0. So an optimal, but not necessarily unique, grasping path can be
recovered by finding this terminal node. Because the entire tree is enumerated in
Algorithm 4.2, the lowest cost node ignoring the xT = ŷ0 constraint can also be
found.

Maximum and minimum sensing distances are a key factor in real world depth camera
performance. These are incorporated into the RVI tree by only running ρex(.) to update
the covariance when the z distance in the camera FoR, from p to ŷ is between 0.25m
and 4m. This same rule is applied when simulating observations for the EKF, using
the distance p to y.
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Time horizon T is set using a fixed number of steps, T = 11 for all experiments. The
generateActionSet function determines the vector ~u = ŷ0 − x0 and calculates regular
steps along this

~u = ŷ0 − x0

δz = ~u

T

δy = δz ×


1
0
0


δx = δz × δy

(4.59)

where × denotes the vector cross product. By axis definitions, the world z axis points
from x0 to the target position y0, before noise is added to that. The action offsets
are then normalised and used to construct the 5 elements of U previously shown in
Figure 4.17

δy = δx|~u|
|δy|T

δx = δx|~u|
|δx|T

U1 = [0, 0, δz]

U2 = [0, δy, δz]

U3 = [0,−δy, δz]

U4 = [δx, 0, δz]

U5 = [−δx, 0, δz]

(4.60)

The EKF update step ρext
(·) is applied to the predicted Σ when generating the RVI

tree. For this experiment, the process of actually moving a camera along the RVI
determined trajectory is then simulated, and an EKF applied to mimic the real fruit
localisation task. The same basic EKF approach as Section 4.3.2 is applied with the
initial values and noise matrices of



4.5 Study: Active Perception 108

x0 = [0, 0, 0, 1, 0, 0, 0]T

Σ0 =


0.01 0 0

0 0.01 0
0 0 0.25



Q =


0.001 0 0

0 0.001 0
0 0 0.001


V =

 4 0
0 4



(4.61)

While ŷ0 is generated by projecting the initial detection z0 to a mean trellis distance of
4m. For the offline case, an RVI tree is constructed once for each run using x0, ŷ0,Σ0

then applied with the EKF. Performance of both the optimal constrained end-point
xT = ŷT−1 and unconstrained path are reported for the offline case. Building a full
RVI tree from each new observation forwards is too inefficient for online arm motion
planning, so the online RVI approach is a compromise intended to determine the
impact of linearisation error.

To do this, the online method re-linearises the information transition model at each
node of the RVI tree by taking an EKF measurement there. Thus each RVI node
contains not only the Σ and initial state estimate, but also a history of EKF observa-
tions to reach that node and updated state estimate from these. The online method
is only practical in simulation because the camera must visit every RVI node, but is
a fast approximation of how well true online RVI would perform.

4.5.4 Estimating WΣ

Gripper geometry is analysed to generate the cost weighting matrix WΣ. For simple
grippers, such as the parallel gripper described Section 5.1.1 this can be done by
inspection. The soft gripper from that section would need to be tested experimentally
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to determine its tolerance to mis-positioning. The parallel gripper finger geometry,
shown in Figure 4.18, will be used to estimate WΣ for all experiments and grips occur
with the axis orientation shown in that figure. The WΣ matrix is a weighting factor
and thus dimensionless, but is normalised so trace(WΣ) = 1.

Figure 4.18 – Dimensions of the fingers and base for the parallel gripper in millimetres,
also axis definitions for all picks located at the ideal grip point, the convention of
red-green-blue corresponding to X-Y-Z axes is used. Further design details in
Section 5.1.1

In the vertical dimension, grips where the fruit centroid falls outside the top or bottom
edges of the finger are likely to fail as the spherical fruit has insufficient friction to
be held on the convex surface. Horizontally, the fingers are 182mm apart when fully
open and most fruit positions within this will be successful. In the depth direction,
fruit are stopped by the gripper base but will be damaged if pushed too far by this.
Based on qualitative observations from preliminary field trials, the maximum push
distance before damage occurs is roughly 30mm for this gripper when applied to
apples. This is expected to be close to equivalent for similar sized crops, such as
plums, but requires confirmation through further testing. For this study the depth
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range, which is the push distance plus the finger length, is set to 127mm and the grip
point used for planning should be 63.5mm in from the finger tips. For this gripper
design, the y axis positioning is much more important to grasp success than either x
or z. This analysis yields a WΣ in mm of

WΣ =


182.0 0 0

0 27.5 0
0 0 127

 (4.62)

which is elementwise inverted and normalised to

WΣ =


0.110 0 0

0 0.731 0
0 0 0.158

 (4.63)

Several scenarios were observed during later testing where off diagonal WΣ elements
would be required to describe picking behaviour. One illustrative example is a fruit
against one of the open fingers. As the gripper closes, pushing it along the x axis, that
fruit behaves as a pendulum and is also pulled upwards along an arc. This induces
correlation between the WΣx and WΣy elements. Determining the magnitude of these
values is difficult.

4.5.5 Active Perception Experiments

To simulate AP informed picking and compare it to manually programmed paths, six
total path types are tested. These consist of two hand engineered trajectories, plus
the offline and online RVI paths both with and without end point constraints. The
offline constrained path corresponds to harvesting, while online and unconstrained
path types are included to explore the impact of these limitations. Each of the 6
paths is run 1000 times with target locations generated around y = [0, 0, 4] with
additive noise of standard deviation 0.5m for the x, y dimensions, and 0.1m for z.
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These six paths are assessed by running the EKF step on each and analysing the
actual evolution of Σ and y − ŷt.

The first hand engineered trajectory tested is a straight line, with equally spaced
camera poses between x0 and ŷ0. This provides some low quality information about
fruit depth as the additive target noise means ŷ0 6= y and the fruit is not directly
aligned with the straight path. The diagonal hand engineered path is v shaped
and is chosen to better gather depth information while still being a relatively direct
trajectory.

Figure 4.19 – The straight line, and diagonal hand engineered sensor trajectories.
Plus samples of constrained and unconstrained paths generated using online RVI.
Blue indicates poses where observations cannot be taken, the green star shows the
true target location and black circle the ŷ0 estimate.

4.5.6 Active Perception Results

Over both hand chosen paths, plus offline and online RVI, the EKF state estimate
errors and covariances are plotted in Figure 4.20. Figure 4.21 shows the weighted cost
function for each path and Table 4.8 summarises this data. All values are calculated
using 1000 EKF runs and are the covariance and cost realised by the filter, rather
than predicted during RVI.
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Figure 4.20 – The mean EKF state estimate error with standard deviation (left), and
mean EKF state estimate variance (right) for each path generation method. Paths
are slightly offset on the x axis for presentation clarity.
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Figure 4.21 – The weighted cost function value by pose number for each path gener-
ation method.

Mean Final
Estimate Error (m)

Mean Final
Estimate Variance (m2) Cost

Path Type x y z x y z
Straight Path -0.001663 -0.00063 -0.021539 0.027503 0.026807 0.314392 0.019628
Diagonal Path -0.001634 -0.00022 -0.044232 0.029666 0.014758 0.16909 0.008574
Offline RVI Constrained -0.004211 0.000039 -0.017913 0.013504 0.004686 0.063592 0.000582
Offline RVI Unconstrained 0.000490 -0.000105 -0.023812 0.006374 0.005267 0.076789 0.000922
Online RVI Constrained -0.003673 0.000062 -0.016535 0.01048 0.005322 0.081423 0.000635
Online RVI Unconstrained -0.003607 -0.000007 -0.015045 0.010458 0.004752 0.064933 0.000579

Table 4.8 – Active perception experiments results, with minimum values highlighted.

From Table 4.8 it is observed that applying active perception significantly improved
performance over both hand engineered paths. While mean EKF error is reduced
by only 4% between the straight path and unconstrained online RVI, x dimension
accuracy is traded off to decrease error in the highly weighted y axis by 99%. Mean
covariance reduced by 75%. This is reflected in the final weighted cost where uncon-
strained online RVI also performs best.

Constraining the offline RVI path resulted in a lower cost function than unconstrained
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offline RVI. Initial target pose estimate error is the likely cause for this. Because
the constraint is applied to ŷ0 which has significant added noise, the probability of
having uninformative final poses is similar for the constrained and unconstrained case,
making this distinction meaningless. The online method constrains the path using
the final target pose estimate which has been updated over time, so does not face
this issue. Final cost is slightly lowered by not applying end point constraints in the
online version of RVI, as expected.

Examination of Figure 4.20 shows how both RVI cases take non-greedy actions which
trade off x,y uncertainty to reduce z uncertainty. This results in a lower final variance
in all 3 dimensions. Figure 4.21 also reflects this where cost values for intermediate
path segments are highly variable and frequently worse than the diagonal path, but
both result in low cost with low variance at the final time step. The increase at the
start and end of these graphs comes from poses where the target is outside the sensing
range and no EKF observations are made.

Both RVI approaches are run single threaded in Matlab with no code optimisation
for speed. Calculated over 1000 runs, the EKF takes 27ms per run, with online and
offline RVI requiring 8.84s and 6.50s respectively. With some improvements the RVI
operations would be sufficiently fast for real-time picking motions.

4.5.7 Active Perception Study Conclusion

Simulated experiments clearly demonstrate that active perception techniques can be
applied to generate informative paths for bearings-only fruit localisation using an
imaging sensor and object detection with minimum and maximum sensing ranges.
Applying constrained online reduced value iteration improved the y estimate standard
deviation from 2.68cm for the straight path to 0.48cm for RVI. This change in error
variance is the difference between the parallel gripper often failing, and accurately
gripping a fruit almost all of the time.

Applying RVI in place of hand engineered trajectories is highly beneficial, however
using the depth sensing data from the stereo camera will still produce better esti-
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mates where this is available. Additionally, these simulated results fail to incorporate
many of the issues seen with the RGBD camera sensing modality, including obscura-
tions, detector failures, and target association challenges. Taking more complex paths
through the trellis canopy will also result in additional collisions, which is the pri-
mary reason active perception is not applied to the prototype system. Faster collision
detection and recovery would alleviate this, and AP techniques for picking guidance,
with collision triggered online replanning in place, should be further explored.

Future directions of this study would also involve conducting physical experiments
where position estimate accuracy can be related to empirical grasp success rates. Real
experiments would also allow WΣ to be estimated from data, without constraints
on diagonality. The Manhattan-distance type action space is overly simplistic and
should be replaced by one with constant Euclidean distance between RVI nodes,
but this negates the easy dominance criteria of the current action space resulting in
significantly slower computation. Active perception may also be applied to determine
fruit ripeness or health by selecting the best sensing modality.



Chapter 5

Grasping In Plum Crops

Upon successfully localising the target fruit, a grasp for this must be planned and
executed. For the task of harvesting, the fruit also needs to be detached from the
tree and dropped into a bin or processing system. Gripper design, actuator selection
and picking motion all contribute to the success of this process, so various options
are considered. One property that sets harvesting apart from many other robotic
problems is the presence of mixed hard and soft obstacles. This complication is
examined and addressed using a mix of soft robotics and careful planning constraints
implemented using a picking state machine. Figures in this chapter are adapted
from Brown and Sukkarieh (2021).

5.1 Gripper Design For Harvesting

Gripper geometry and robustness have significant impacts on harvesting success and
several designs were tested prior to settling on two alternatives for the field trials.
Many forms of end effector have been proposed for fruit harvesting, as reviewed
in Davidson et al. (2020). Though a wide range of designs are proposed, one identi-
fied taxonomy of grippers is between pneumatic and electric actuation. Soft robotics
is well matched to pneumatic actuation and, with this in mind, a rigid electric servo
driven gripper is compared to a pneumatic soft gripper in field trials. Distributing
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stress concentration over each spherical fruit is required to avoid bruising, this sug-
gests the use of 3 or more fingers, or conformable components such as soft pads. Ini-
tially, two tendon driven designs with 3 fingers were developed, but these designs were
very complex resulting in them being overly time consuming to fabricate and main-
tain, so a simple parallel gripper was eventually developed for further field testing.
None of these three rigid designs address obstacle collisions, so a soft pneumatically
actuated gripper was built and used for the final field trials. All four designs used
3D printing, rapid prototyping techniques and commercial parts where possible to
minimise cost and development time.

Prior to harvesting system development, a copy of the Yale OpenHand Model O
from Ma and Dollar (2017), was built for testing on generic agricultural manipulation
tasks. Experience with this highlighted the benefits of under-actuation for organic
geometries and the simplicity of tendon driven joints compared to geared or belt drive
transmissions. The benefits of being able to re-configure the gripper size for various
fruit types and the need for embedded sensing were identified.

Such functionality motivated the design of a modular 3 finger gripper with additional
degrees of freedom which is shown in Figure 5.1. This was designed to support func-
tionality beyond plum harvesting, such as tree stem spraying and handling small farm
tools. These application goals resulted in a design with 18 degrees of freedom, in-
cluding 6 for the base pose. It used embedded range sensing with similar ToF sensors
to Section 3.4, while keeping the tendon drive approach of the OpenHand. Modular
finger units were designed so that fingers could be easily added or removed, while
the extra DoF on each module base allowed the finger separation to be dynamically
reconfigured for large or small objects. This gripper was overly complex for harvest-
ing, leading to planning complexity, robustness and construction time issues. While
the hardware was fabricated and validated, it became apparent this design was not
appropriate for harvesting before full DoF planning and embedded sensing feedback
could be tested. Designs for autonomous harvesting must be very simple and robust
to meet cost constraints and the high cycle rates.
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Figure 5.1 – The high DoF re-configurable gripper design, shown with 3 independently
actuated finger modules in the standard equilateral triangular configuration. Each
colour denotes a single actuator controlling those joints.

5.1.1 Parallel Gripper

To improve robustness, the simplicity of a tendon drive design was applied to a low
component count and easy to fabricate parallel gripper, shown in Figure 5.2. This
was designed from scratch for plum harvesting with the specifications in Table 5.1.
Two finger cars slide on a standard linear rail, with 3D printed components at the
centre and ends of the rail. This means the gripper can be resized for different fruit
by using longer or shorter rails, without changing any other parts. A single MX-
28T servomotor turns a pulley which the continuous tendon loop is wrapped around,
so that operation in one direction opens the fingers, and the opposite closes them.
The pulley can be resized to alter the motor gearing for heavier and more robust
fruit, or small and easily damaged targets. Force control and position feedback are
also implemented on the MX-28T. Designs and software for this are made available
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online.11

Figure 5.2 – The simple parallel gripper used for field testing. The tendon (not shown)
runs in a loop from one car, through the end pulley, to the actuation pulley via the
mid pulley, then on to the other end pulley and car.

Finger plates for the parallel gripper bolt onto the sliding cars, so can easily be
modified for various harvesting conditions. A finger size of 100 x 27.5mm, fabricated
from 3mm aluminium was used for testing. This has a small amount of flex which
helps regulate grasping force on the fruit, under full load, a finger tip deflection of
approximately 15mm was observed. Cup type fingers were tested, but led to a large
number of collisions when accessing fruit. A design trade-off exists for harvesting
where sharp and narrow fingers are best for deflecting off hard obstacles, while broad
flexible fingers are required to avoid bruising fruit. Achieving form closure of the fruit
is only possible by placing finger segments on the far side of each target, the same
part of the fruit which is least accessible.

Both the parallel and soft grippers are connected using their respective control boxes,
this allows for an identical robot operating system (ROS) action service and hardware
interface between the two. Control occurs using an Arduino with position and torque
feedback used to determine if an object has been grasped. The parallel gripper closes

11https://github.com/jaspereb/SimpleSliderHand
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Property Value
Tested Rail Length 300mm
Max Rail Length 600mm
Min Rail Length 140mm
Max Finger Distance Rail Length – 120mm
Min Finger Distance 8mm
Max Force 200N
Force Control Resolution 0.2N
Max Actuation Time 2.1s
Positioning Resolution 0.02mm
Mass 850g
Dimensions 300x170x65mm
Tested Finger Dimensions 100x27.5x3mm

Table 5.1 – Parallel gripper specifications, speed and force can be balanced by altering
the tendon pulley diameter, while the rail length can be adjusted for different fruit

until a software configurable motor torque is reached.

5.1.2 Soft Gripper

Operating with both soft and hard obstacles is a major challenge, as described in
Section 5.2. Several concepts were explored to design a gripper capable of recovering
from collisions and deflecting over obstacles caught under the fingers when retrieving
fruit. This is required to avoid fingers frequently becoming stuck on branches and
stems near the target fruit. Placing springs in series with tensioning tendons would
allow finger deflection, but physically incorporating sufficient length springs to avoid
plastic deformation is challenging. Static friction and spring pre-loading also lead to
slower and less predictable actuation. Flexible urethane joints, as in the OpenHand,
are a hybrid of hard and soft fingers, but are not fully backdrivable due to inextensible
tendons. Fast feedback force-torque sensing for collision detection is a control based
solution, but is high complexity and requires an equally fast actuation response, which
is not guaranteed with the current arm interface method.

Entirely soft fingers provide excellent tolerance to collisions, with rapid and sim-
ple actuation using compressed air. The downsides of pneumatic actuators, such as
needing to determine their shape at design time and their inability to provide posi-
tioning feedback, are lesser drawbacks for the harvesting task than for other robotic



5.2 Mixed Obstacle Planning 121

manipulation applications. Soft and organically shaped fruit are a good match for
soft robotics components, with little chance of bruising. Small finger size and a fully
separated power source allow multiple fingers to be positioned in a compact gripper
with space for embedded sensing.

The fingers were designed and manufactured by Yi Sun as described in Sun et al.
(2013) and Sun et al. (2017). Four of these are integrated into a basic cup-shaped
gripper, illustrated in Figure 5.3, with the D435i mounted above them, and wide angle
camera embedded in the gripper centre. All fingers are connected to a shared air loop
at either ambient pressure or 60psi when actuated, so that they close together. The
number and placement of fingers is experimentally optimised for plum-sized fruit.
Too few fingers lead to the fruit not being enveloped and it escaping through the
gaps between them. Mounting hardware complexity and probability of failures in the
common air loop increase with the number of fingers, they also begin to collide with
the sides of each other as radial spacing is reduced. Actuation control is binary with
no feedback mechanism.

Three of the numerous stable gripper modes can be seen in Figure 5.3. The partially
enclosed modes occur when an object is too large or sufficiently far away, stable mode
(b) is reached by rotating the gripper during closing, while (c) occurs when the target
is slightly below the grip point.

Mounting the D435i depth sensor above the fingers prevents it from contacting most
fruit during harvesting, with a semi-rigid flap providing further protection. The
embedded wide angle camera is positioned to provide a good view of the grasping
area, while being sufficiently deep that fruit can be properly contained in the gripper
cup without touching it.

5.2 Mixed Obstacle Planning

Soft, or moveable, obstacles are those a gripper can move through without resulting
in damage to the system, these include leaves, vines, and small branches. Contact
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Figure 5.3 – The four fingered soft robotics pneumatic powered gripper, with em-
bedded sensing. Also shown are the hard and soft regions of the gripper, where
collisions are consequential and inconsequential respectively. Three common stable
finger configurations are shown; a) fully enclosed object, b) partially enclosed with
rotation applied, c) partially enclosed with vertical movement applied.

with these may cause minor damage to the plant or crop but is often necessary for
accessing fruit. Hard obstacles, such as trellis wires or posts, branches, and the
ground, sometimes result in damage to the hardware. Discerning a hard from soft
obstacle is challenging, hard trellis wires are much smaller than soft branches, while
hard trunks are often obscured by soft leaves.

Building a perception system to classify obstacles into hard and soft varieties was con-
sidered, but adds significant complexity. Non-penetrating sensors, such as cameras,
are inherently incapable of directly identifying obscured hard obstacles, including
branches hidden by leaves. Both lidar and radar can penetrate leaves and may be
applied for this in future, though considerable work is required to integrate and use
these sensors for obscured obstacle reconstruction. Instead, the problem of mixed
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Figure 5.4 – Example frame with hard obstacles highlighted in red and soft obstacles
in blue. Part of the gripper and one fingertip can be seen in the foreground.

obstacle planning can be solved at a system level. The harvesting prototype system
does this by combining the inherent structure of the trellis system, with soft robotics
components and constrained motion. Doing so avoids the need for additional sensors
and perception algorithms.

The fruiting wall trellis structure happens to be excellent for automation, but was
originally adopted for mechanisation. Because tractors, spray units, flower thinners,
and other wide machinery must travel down each crop row several times per season,
any hard obstacles beyond a certain distance from the trellis are either pruned off
or broken by passing tractors. This effectively guarantees a plane, beyond which no
hard obstacles are encountered.

When using the soft gripper described in Section 5.1.2 the plane beyond which no
hard obstacles occur can be offset by the soft finger length, because contact between
soft components and hard objects is acceptable. This results in the three planes
shown in Figure 5.5. The approach motion region uses the approach and retraction
arm controllers described below. Motion outside this is planned using RRTConnect
and KDLKinematics for inverse kinematics, running in the MoveIt! framework with
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unconstrained arm motions. Multithreaded processing is used for planning future
motions while executing the current path. Repeated trajectories such as moving from
the drop point to home pose are stored for reuse and executed at higher speeds.

Figure 5.5 – The planning planes and motion regions for harvesting the right hand
side of a crop row. From right to left is the fast motion plane where no hard
obstacles occur and full motion arm planning is used. Followed by the hard obstacle
plane which rigid gripper components will not cross and where approach controller
motions are used. Finally, the maximum finger reach plane, which is the deepest
fruit reachable by the soft gripper components.

By leveraging the inherent trellis structure, soft robotics components and multiple
constrained planning planes, damaging collisions are avoided without the need for
highly complex perception steps. This approach to mixed obstacles does introduce
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limits on other system design aspects. Specifically, only simple approach and retrac-
tion controllers can be used, preventing advanced motions such as choosing to pick
fruit from above or below. It also requires a gripper positioning system capable of
moving linearly from the outermost plane to the grip point, meaning no singularities
can be present. The UR5 arm can only do this for small regions of motion, hence a
restricted harvesting region of interest (RoI) measuring 0.5 x 0.5 x 0.8m is defined and
only fruit within this are attempted. Figure 3.4 shows the RoI in blue. As mentioned
below, the UR5 is only used for prototyping motions and a cartesian gantry would
not suffer from the same RoI restriction.

5.3 Actuator Selection

Despite these issues with possible singularities in the approach and retraction con-
troller motion, the choice of an articulated robot arm for gripper positioning was
beneficial for testing other complex motion strategies. Use of a cartesian gantry sys-
tem was also considered for its better speed, cost, weight and planning time, but
would have restricted the system to linear movement. Without a clearly superior
picking motion available in the literature for plums, it is not possible to determine
which degrees of freedom are required, so an articulated arm is chosen for development
flexibility.

A UR5 CB2 articulated robot arm is used for testing. This is a 6 DoF arm with a 5kg
payload, being a collaborative robot (CoBot), farm workers are also able to safely
harvest fruit around the robot while it operates. Commercial deployment of such
a harvesting system would use a cartesian gantry matched to the required picking
motion, so arm reach and speed are not major concerns for the prototype harvester.
However, basic speed tests were carried out to determine the maximum picking rate
of the UR5. The arm was tested on the lab setup described in Section 6.4, and run
at 100% of its factory default speed, this can be increased but makes collisions less
safe. Including all system components results in a 12s per fruit pick rate, or 300 per
hour. Waiting for UR5 motion to complete is 75% of the total time, so actuation
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speed is the dominant factor in the picking rate. Moving to a cartesian system can
reduce this.

While the pick rate required for viable commercial operation is determined by a raft of
factors, our informal discussions with plum growers indicated a pick rate one quarter
that of a human would be economic for them. During field trials a mean pick rate of
around 4600 plums per hour was measured for experienced human pickers, the current
development system is an order of magnitude slower, but can operate 24/7. Picking
speed is a critical performance metric for commercial harvesting systems, but is less
of a focus than collisions, and the picking success rates, for this initial prototype.
Beyond actuation speed, other considerations for agricultural robotics include water
and dust ingress, all of which can be better met by linear motion systems.

Control of the UR5 arm occurs using joint wise proportional-integral-derivative (PID)
loops running on the standard UR controller box, which also supports basic motion
planning. This hosts a full Linux instance and is needed for the computationally de-
manding kinematics solutions required by articulated arms. Using a highly restricted
picking RoI largely eliminates singularities, and is required because the approach
motion controller, described below, is unable to perform singularity checking when
operating with the CB2 model arm. Later models implement this functionality.

5.4 Motion & Control

Effective harvesting requires accurately placing and closing the gripper, then applying
the correct motion to detach the fruit without causing damage, these two phases are
approach and retraction respectively. While many different picking motions have been
proposed for other fruit, no performance studies for plums exist. Human pickers were
observed to use a twisting motion about two plum axes to detach the fruit, which was
confirmed as the most effective approach by the farm manager. This strategy, shown
in Figure 5.6, called complex motion was tested, along with a simple straight pull
for comparison. Testing the parallel gripper with complex motion resulted in many
collisions, so only straight trajectories are trialled for this.
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Figure 5.6 – The complex picking motion consisting of (a) the straight approach, (b)
gripper actuation, (c) rotation, and (d) angled retraction.

Moving through the approach motion region of Figure 5.5 will cause contact with soft
obstacles and occasionally rigid ones. To minimise the volume swept by the gripper,
and to assess the viability of a cartesian gantry system, the goal approach trajectory
in this region is constrained to be linear and perpendicular to the trellis. This goal
trajectory should terminate at the fruit position estimated using the EKF, however
that estimate may be inaccurate and fruit often move as surrounding branches are
contacted by the gripper. Feedback from the embedded wide angle camera can be
used to update the pose estimate online. So both a direct approach controller using
only the EKF information, and a feedback controller using the wide angle camera
were developed.

The direct servo controller uses the EKF pose estimate without updates from the
embedded camera. End effector motion commands from the direct servo controller
are sent using the UR script interface. The UR5 controller then performs a differ-
ential IK step to calculate instantaneous joint velocities to achieve the commanded
motion. This uses the robot Jacobian directly, with no singularity or collision check-
ing performed. A velocity vector perpendicular to the trellis is sent until the desired
movement distance is reached.

The IBVS controller runs the object detector model from Section 4.1 on each wide
angle camera frame to perform image based visual servoing control of the end effector.
This can respond to fruit motion during harvesting and correct for bad initial pose es-
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timates, but may become obscured or attempt to reach the wrong fruit. Algorithm 5.1
describes this controller, where uBBox, vBBox is the centroid of the object bounding
box. The grip point in the image frame (utarget, vtarget) is experimentally calibrated
at the goal fruit radius, and the pixel space gains Gu, Gv are manually tuned. Target
association is done by finding the detection nearest the image frame centre, with the
embedded camera aligned to the EKF position estimate when the IBVS controller
is initialised. Each time the lost tracking counter increases, the previous motion
command is also re-run.

Algorithm 5.1: IBVS Approach Controller
while new image frame do

if time > max time then
Return status = time limit

if distance > max distance then
Return status = distance limit

detections ← runDetector(image);
if no detections then

lost tracking counter++;
if lost tracking counter > 15 then

Return status = tracking lost
else

lost tracking counter = 0;
Bbox = min

Bbox∈detections
|(utarget − uBbox)|+ |(vtarget − vBbox)| ;

if Bbox radius > max radius then
Return status = success

sendNewControlSignal(Bbox);

In Algorithm 5.1 the sendNewControlSignal function calculates an error term in pixel
space and applies controller gains to this

uvel = Gu(uBbox − utarget)

vvel = Gv(vBbox − vtarget)

(5.1)

The z axis preset velocity towards the fruit eevel, is calculated and used to construct
the end effector velocity vector ~V as
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dvel = eevel −max(|(uvel, vvel)|)

~V =


uvel

vvel

dvel



(5.2)

this end effector velocity is scaled and sent to the UR5 controller box

~Vcmd = ||~V ||2 × eevel (5.3)

Both controllers account for joint limits by stopping motion if any joint comes within
2 degrees of its limit. If any joint exceeds the software set limit, the previous end
effector motion command is inverted and sent to bring that joint back within range.
Stopping with a success condition occurs if the largest object detection exceeds a set
radius, with such a wide angle camera, this is a reliable indicator of a fruit within the
gripper cup.

Singularities, unreliable detections and obscuration are issues for the IBVS controller.
Moving through singularities while commanding an end effector velocity results in
infinite joint speed commands, this e-stops the robot which can be detected and
reset in software. A similar process occurs for collisions and both cause the IBVS
controller to return with an error state. Unreliable detections or obscurations can
mean the target is lost for many frames, also causing an IBVS error. Where one
target is lost but other fruit are in frame, the controller will switch to tracking those.
Oscillating behaviour can result from this, where the controller switches between
two targets multiple times. During preliminary lab testing this was observed only a
handful of times, but is more likely if detector performance is low. By re-sending the
previous command for frames with no detections, the camera is often able to push
past obscuring leaves to regain tracking on the target.

This form of controller is non-linear due to target association and Equation 5.2, but
was found to be stable and effective in practice across wide ranges of Gu, Gv. Both
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parameters are also dependent on the framerate, and hence the controller update
rate, of the embedded camera and object detector. Safety is the primary concern
when setting eevel and encountering singularities can be dangerous regardless of end
effector speed.

5.5 Picking State Machine

When performing autonomous harvesting, the system operation can be described by
a state machine, shown in Figure 5.7. Actuation goal poses and motion planner
settings are the main output of this. It is able to switch between RRTConnect for
global planning or one of the approach controllers for moving through the obstacle
planes. Actuation goals consist of 5 end effector poses which are defined at all times,
these are a compact home position, a pose above the fruit basket, a look position, an
approach pose offset from the target fruit by 150mm to place it outside the right-most
obstacle plane and the current target fruit position from the EKF. Operators are able
to manually actuate the gripper, set or recall the actuation goals, or run autonomous
harvesting. The home position is used for transporting the arm and when initialising
the system. Between picking motions the system returns to the look pose, which is
used to image a large area of trellis while being close to the RoI to minimise actuation
time.

Autonomous picking currently occurs once per mobile platform base position, so all
fruit in the RoI are harvested, the platform is then moved forwards and the process
repeats. Picking while moving at slow speeds should be possible with wheel encoders
fitted. When picking starts, the EKF state vector is cached and each fruit from this
is added to the global planning frame. The state machine then attempts to pick
these in order of decreasing height. More advanced ordering approaches, such as
travelling-salesperson formulations, are not required for a static fruit basket. The
optimal starting fruit is that which falls furthest on the vector connecting the drop to
the home position, other fruit orderings do impact overall picking time. Identifying
fruit which prevent access to others, and must be picked first, would improve overall
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Figure 5.7 – The state machine used to control picking. Not shown are the user input
states, including recording or recalling key arm positions.

performance and is something to be examined in future.

When moving past the fast motion obstacle plane, the IBVS controller takes over,
if any error condition occurs the system switches to the direct servo controller. If
that also fails the state machine moves to the next fruit. Upon approach controller
success the gripper actuates and one of the retraction motions is applied. For the
parallel gripper, force and torque feedback indicate if nothing has been grasped. If
that occurs the IBVS approach method is rerun once. This controller, along with
the gripper design, picking motion and mixed obstacle planning approach, are tested
during the field trial described in the following chapter.



Chapter 6

System Implementation & Field
Evaluation

This chapter details implementation and field testing of the full system prototype
including all functional modules previously described. Figures in this chapter are
adapted from Brown and Sukkarieh (2021), and some additional experimental method
details are available there. The chosen environmental representation of primitive
shapes and collision meshes is combined with a stereo RGBD, and monocular RGB,
camera to sense target fruit. Object detection is run on RGB frames and the re-
sulting bounding boxes are combined with depth information to perform fruit pose
estimation. These poses are Kalman filtered and transformed into a global frame for
persistent tracking.

The picking state machine determines the action sequences, with both IBVS and
direct approach controllers used for final gripper positioning. Retraction motion
and gripper type are both essential design decisions, so the alternatives presented
in Chapter 5 are evaluated using the prototype harvester. System field trials occur
on a commercial plum crop in Swan Hill, Victoria. Details of the trellis type used
are presented here, along with motion and gripper comparative studies, and overall
system performance.
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6.1 System Hardware

System hardware consists of supporting elements such as power, mobility, and com-
putation, along with robotics specific elements of sensing and actuation. Supporting
hardware selection is relatively straightforward, but concern must be paid to the
ruggedisation, endurance, size and weight of components. Hardware system design
goals were to build a fully self contained development platform with long endurance,
modularity, and support for additional types of payloads in the future. Agriculture
specific constraints include being able to fit within 2.5m crop rows, access a 3m tall
picking window, and turn on a 3.5m row headland. All of these goals were met with
the use of a trailer base and onboard generator.

6.1.1 Supporting Hardware

To maximise flexibility of the support hardware, a mobile trailer base is used which
can be towed by a robot or farm vehicle, simplifying trial logistics. Key hardware
components can be seen in Figure 6.1. Commercial off-the-shelf parts are used wher-
ever possible to minimise cost, though the gripper, gripper control unit, and sensor
mountings are all custom fabricated. Compute and support components are mounted
on the lower level of the trailer, with actuation and sensing on the upper platform.

Modularity of both hardware and software is a focus, so all components are mounted
for easy removal using a tray and latch system. Water and dust resistance is provided
by a hook and loop secured skirt that encloses the bottom level of the trailer. Compo-
nents on the platform top, such as the robot arm, are IP54 rated, whereas IP55 would
be required for true waterproof operation. An uninterruptible power supply (UPS)
provides a 20 minute battery runtime, allowing the generator to be refuelled while
the system is active. Trailer motion from arm inertia was a predicted issue but was
not seen in practice.

A 3kW petrol generator provides 240V power, with system demands shown in Ta-
ble 6.1. Compressed air at 60psi is required to actuate the soft gripper design. This
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Figure 6.1 – System hardware modules and connections, grouped by function.

comes from a small compressor with an onboard storage tank, the duty cycle of this
is close to 5% resulting in a low average, but high peak power draw.
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Component Nominal
Power (W)

Maximum
Power (W)

Input
Voltage (V)

Compressor 50 1000 240 AC
Zotac 200 330 240 AC
Arm 150 325 240 AC
Xavier 40 75 9-20 DC
Router 10 10 12 DC
Arduino 1 5 5 DC
D435 1 2.5 5 DC
T265 2 2.5 5 DC
Wide Angle
Camera 2 2 5 DC

Table 6.1 – System power budget

6.1.2 Computing Hardware

Compute and networking are handled by a general purpose PC, embedded deep learn-
ing computer, router, gripper control box, and hubs for USB devices.

A Zotac EN72080V mini PC is used as the general purpose computer, this contains
an i7 processor, 32GB of RAM, and an NVIDIA RTX2080 GPU. To deploy deep
learning models in a power efficient manner, and to reduce the Zotac system load, an
NVIDIA Xavier embedded computer is used for deep learning inference.

6.1.3 Sensing & Actuation

Three forms of sensing are required, long range fruit detection and localisation, short
range detection for feedback control, and platform position tracking. The first is
provided by a Realsense D435i RGBD camera mounted above the gripper. This
provides both an RGB image for object detection and a depth map to estimate the 3D
location of fruit and obstacles. Platform position tracking is done using a Realsense
T265 simultaneous localisation and mapping camera mounted to the rear corner of
the trailer. Platform localisation is important for tracking targets as they move in
and out of frame, additionally it allows for orchard scale data registration for yield
mapping and health monitoring. Data streams for the IBVS approach controller are
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provided by a wide angle (170° diagonal FoV) eye-in-hand camera in the soft gripper.

Rapidly iterating on multiple gripper designs is an important aspect of system de-
velopment. So the modular approach was extended to this area by defining a design
agnostic interface consisting of a gripper control box and ROS action service. The
gripper control box takes standard form ROS action requests and performs low level
servo or valve actuation to control gripper motion according to these. Identical phys-
ical and electrical input characteristics mean grippers can be quickly swapped in the
field. A UR5 CoBot arm is mounted on the trailer top with the soft gripper attached
to this. For parallel gripper testing, the end effector and gripper control box are
swapped, with positioning done manually.

6.2 System Software

The robot operating system (ROS) software is chosen to handle process communica-
tion and the launching of compute nodes. This is inherently modular with well defined
interfaces, known as ROS topics, services or actions, between processes. Process de-
pendencies match the functional module order of Figure 6.2 and were developed in
that order. The perception module, for fruit localisation in a global frame, was first
developed as a standalone ROS package. This could then be applied to other tree
crop projects for counting, health assessment or yield estimation. The modules fol-
lowing that were then developed and tested in the lab. A simple parallel gripper was
the first design used, described in Section 5.1.1, and the system was then taken for
testing on a nearby apple crop.

Field experiments use the YoloV3 embedded detector architecture running on the
NVIDIA Xavier, with the comparative study in Section 4.1 conducted after the field
trials were complete. HSV patch filtering, described in Section 4.3.1, is applied to
estimate fruit poses which are stored and filtered within the EKF state vector.
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Figure 6.2 – Software architecture for the as-tested prototype harvesting system. Ar-
rows indicate data flow direction

6.3 Field Testing Phases

Following the development of all major prototype components, the full system under-
went three phases of testing. First, lab testing was carried out on the trellis simulation
described in Section 6.4, to identify and fix system faults. Trials on a locally grown
apple crop followed this to provide qualitative data on component performance amid
more realistic obstacle and sensing conditions. Finally, a full-scale week long trial on
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a commercial plum crop was carried out in Swan Hill, Victoria. One reason for using
a three phase trial is the narrow harvesting window present for most tree crops. This
limits final testing to a handful of weeks each year for any given plum variety.

During lab testing, many issues were rapidly identified and corrected. Key to this
step was the effective visualisation and data flow inspection tools available within
ROS. As a development decision, all tunable module parameters were put on the
ROS parameter server and coded for online updates. While this added development
overhead, it was instrumental during the lab testing phase and saved saved valuable
field trial setup time. Previously mentioned issues with approach controller singular-
ities, calculating fruit depth using overlapping leaf depth readings and determination
of overall actuation time were resolved at this point.

With the system reliably able to pick fruit in the lab simulated trellis setup, testing
moved to local apple crops. These provide a realistic collision environment of hard
branches with dense leaves. Unlike the final plum crop, these are grown in semi-
flat trellis, with branches allowed to extend up to 1m from the trellis plane. This
invalidated the assumptions in Section 5.2 resulting in many problematic collisions
and reinforcing the importance of using fruiting wall style trellis. Moving rigid gripper
fingers past obstacles, as described in 5.1.2, was identified as required functionality
during this testing. Gripper design refinements were the primary outcome of apple
testing, with the object detection, localisation, and tracking shown to execute without
bugs or significant errors under field conditions.

Trials on a commercial plum crop took place over a week in Swan Hill during normal
harvesting operations, as described in Section 6.5. Overall system success rate was
determined, and key design choices around the gripper type and picking motion were
evaluated. The ‘Late Scheffer’ plum cultivar type was used for testing, grown in
the fruiting wall configuration described in Section 6.4. Bunching of fruit was one
issue observed for this crop, a common phenomenon driven by inconsistent flower
thinning. This complicates both autonomous and manual picking, and reduces fruit
quality leading to disease and bruising where fruit are in contact. Feedback from
the grower indicated that he expects to largely eliminate bunching through improved
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thinning methods the following season.

6.4 Trellis Type and Parameters

Success of autonomous harvesting is highly dependent on the cropping conditions en-
countered. Trellising is the primary component of this and consists of the supporting
and training system for trees, typically made from rigid posts and metal wires. A
variety of growing systems are used in Australia, but one recent paradigm has been
the Simple, Narrow, Accessible, Productive (SNAP) principle, as in Gao et al. (2020).
Flat 2D trellis types, also known as fruiting walls, meet this definition and are becom-
ing increasingly popular. These provide excellent access for mechanised tools, which
is one of the factors currently driving their adoption among growers. The flat surface,
excellent fruit access and easy pruning rules that make these suitable for mechanisa-
tion also make fruiting walls an ideal candidate for robotic harvesting. This 2D trellis
type is used for development and testing, as seen in Figure 6.3, but other forms such
as V or T trellis types are also common.

As with many fruit, plums develop from individual flowers which grow in clusters. Left
un-thinned, the large number of natural flowers compete for tree resources resulting
in smaller and lower quality fruit. Effective flower thinning is identified as the most
important factor in growing high-quality fruit by Looney (1993). Thinning can be
done chemically or physically and is often a blanket treatment followed by hand
thinning. Typical regimes aim for one to three fruit per flower cluster, and hand
thinning allows the exact fruit position to be chosen from each flower bunch. Thinning
strategies can be selected to support autonomous harvesting, such as eliminating fruit
behind branches or near trellis posts.

Progressive system development and testing required a lab simulation for early trials.
This was constructed as a fruiting wall using synthetic trees with steel washers fixed
to these at various locations. This allowed multiple synthetic fruit types to be fitted
with magnets for easy reconfiguration and resetting after tests. Synthetic oranges,
apples, lemons and plums were tested using this magnet attachment method in order
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Figure 6.3 – A fruiting wall trellis section with immature plum trees, clearly showing
how these are trained into 2 vertical trunks which are fixed to the trellis wires and
to reinforcing bamboo poles, which are later removed. Fruit grow directly on the
trunks and small horizontal branches which are pruned annually into the 2D plane
of the fruiting wall.

to explore different target sizes and appearances. Ideal detachment force was similar
to that of a ripe plum, but varied as the magnet did not always sit flat against the
washers where branches or leaves were in contact with it. Tree bases were weighted
in place, allowing them to move upon significant collisions. Likewise, the trellis wires
were held under spring tension so that collisions would trigger the arm emergency
stop but not damage the gripper or trellis setup. This flexibility allowed problematic
collisions to be identified during testing without them causing damage.

Shape and visual properties were well captured by the simulated trellis through the use
of photorealistic fake trees and fruit designed for interior decoration. These allowed
perception components to be tested, though this simulated trellis does have several
limitations. The synthetic trees are cast from a semi-flexible plastic with an internal
metal support structure. This was more flexible than true plum branches and much
less abrasive, both such issues were encountered in field trials. Flexibility also led to
large fruit and branch movements when approaching or picking fruit. Indoor lighting
is also more regular, while rain, wind, or dust are hard to simulate.
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6.5 Plum Harvesting Experiments

Three experiments are conducted using the commercial plum crop, these are an over-
all system evaluation, plus gripper type, and picking motion studies. The gripper
type experiment compares the two completed grippers from Section 5.1 using simple
motion. While the picking motion experiment compares the two motion types from
Section 5.4. Overall system evaluation is done using the best found combination of
gripper and motion, which is the soft gripper and complex motion.

Key overall metrics are pick attempt success rate, collision rate and hardware fail-
ure rate. For several fruiting wall trellis sections all fruit falling between the middle
trellis wires, corresponding to the RoI height, were left untouched by human pickers.
For each trailer position along the crop row, all fruit detections within the RoI were
attempted. The platform was then moved forward until a 100mm overlap with the
previous RoI remained, ensuring all fruit were attempted. Targets appearing in multi-
ple RoI overlaps were manually excluded so all targets were only attempted once. No
modifications are made to the crop and no fruit, including those behind trellis wires
or trunks, are excluded from picking attempts. Parameter tuning, which includes the
fixed pose locations, trellis obstacle plane distances and detector confidence thresh-
old, occurred over the first 4 days of the week long trial. Object detector training,
and qualitative assessment also took place during this time, under conditions of sun,
wind, rain, and darkness. Quantitative testing then occurred over two days. A total
of 64 pick attempts were carried out with the nominal configuration of the soft gripper
with complex motion. The Section 5.4 simple picking motion was also tested on 20
soft gripper pick attempts. Comparison of the soft and parallel grippers took place
by manually positioning the latter over target fruit in either a vertical or horizon-
tal orientation, then closing it and applying the simple retraction motion. Complex
picking motion with the parallel gripper resulted in damaging collisions for almost
every attempt and was too dangerous to further evaluate without risking arm or tree
damage.

While lab testing and initial field trials indicated that the IBVS controller was es-
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sential to correcting for picking induced fruit movement, tests on plums during the
first field trial day saw almost zero fruit movement. The close proximity of plums
to branches and more rigid trellis structure reduced fruit motion below the gripper
position tolerance. While the IBVS approach controller is quite robust, with almost
no fruit movement any IBVS errors outweigh the benefits of this feedback controller.
Instead, the direct servo approach controller was used for all plum harvesting at-
tempts.

6.6 Results

Pick success rate for the best system configuration was 42%, below that required for
commercial viability but reasonable performance for an initial prototype. Comparison
with existing literature results is difficult, as the majority of papers report figures for
modified crops, or where only easy fruit are attempted. Some system components
were clearly identified for improvement. The parallel gripper was ineffective due to
collisions and failed picks, while the harvesting motion chosen is critical to success.
Damaging collisions were eliminated, with no damage observed when using multi-
plane planning and the soft gripper, but soft actuator longevity is one challenge.

The lower than expected recall from YoloV3 led to the post-trial analysis of object
detector architectures, presented in Section 4.1. Use of embedded software compo-
nents may have impacted this, so Section 4.1 uses a non-embedded YoloV3 version.
During the trial a basic HSV thresholding object detector was tested as an alternative
to YoloV3, but proved unsuitable. Results for this are in Table 6.2 where a positive
detection is assessed using a 0.5 IOU bounding box overlap.

The pre-trial testing described in Section 6.3 showed the importance of dealing with
collisions and the effectiveness of soft components for picking success. Numerous
emergency stops were triggered by contact between branches and the rigid parallel
gripper fingers. These failures alone are sufficient to prevent this design being prac-
tically used, but even without collisions the parallel gripper only succeeded 30% of
the time. Success for this gripper, as for the soft gripper, is defined as detaching a
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HSV
Day

YoloV3
Day

HSV
Night

YoloV3
Night

True Positives 57 73 30 13
False Positives 14 0 6 0
False Negatives 170 154 40 57
Mis-Separation 24 2 4 1
Recall 25.1% 31.2% 42.9% 18.6%
Precision 80.3% 100% 83.3% 100%
Bad Box Rate 42.1% 2.7% 13.3% 7.7%

Table 6.2 – Embedded YoloV3 and HSV object detector performance during initial
field trial evaluations

fruit without dropping it. As shown in Table 6.3 the rigid gripper orientation is im-
portant with vertical, fingers above and below the fruit, outperforming horizontal by
a factor of 3. Parallel gripper failures typically occurred due to an obstacle coming
between the finger and fruit. Most obstacles exist on the sides of fruit, instead of
above or below them, explaining the importance of orientation for this gripper. Soft
fingers, which can deform over obstacles and re-contact the fruit, do not have the
same dependence on orientation. One limitation of the gripper design study is the
small number of tests that could be carried out. For the rigid gripper, much time was
lost to collisions, meaning fewer assessable attempts could be completed in the time
available.

Manipulator Type Successes Failures Success
Rate

Soft Gripper
Simple Motion 4 16 20.0%

Soft Gripper
Complex Motion 27 37 42.2%

Horizontal
Parallel Gripper 2 8 10.0%

Vertical
Parallel Gripper 6 7 30.0%

Table 6.3 – Picking success rate by gripper and motion type

Soft gripper performance was more than doubled when moving from simple to complex
picking motion. One reason for this is the mechanics of fruit detachment. Mature
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plum fruit naturally release at the abscission layer when ripe and will break at this
layer if shear force is applied. Straight tensile force does not cause the same abscission
detachment and requires much more total force to remove the fruit. It also risks
stem pull-out which can damage the fruit by breaking the skin allowing diseases and
contamination in. Complex picking motion results in much more shear than tensile
force and mimics the behaviour of human pickers, leading to more detachments at the
abscission layer with lower net force. Low individual finger force is one limitation of
the present soft gripper design, meaning picks were rarely successful unless all fingers
could be in contact with the fruit. An additional benefit of complex motion is the
twisting action allows the fingers to fall into a more closed stable mode where the
fruit is better in contact, leading to more force transmitted. This effect can be seen
in the bottom row of Figure 5.3.

Reasons for soft gripper failures are Tabulated in 6.4. Bad positioning is assigned
when a more accurate gripper pose is expected to have enabled a pick success, such
as by having more fingers in contact or avoiding nearby obstacles. Knocked off target
failures are often a specific type of bad positioning where a finger contacted the target
fruit centre and knocked it off before grasping it. Gripper failures were unfortunately
common with this finger design, which would be improved with more robust materials
in future iterations. However, it was observed during testing that the pneumatic finger
actuators have mostly graceful failure modes when ruptured. In most cases, small
leaks developed in the finger end caps leading to a partial pressure loss in the common
air loop. The supply rate of the compressor and sufficient diameter tubing meant that
other fingers could still operate at the lower pressure with only a small drop in holding
force. For the damaged finger, the balance of air pressure determined the actuation
force, such that small leaks would reach pressure equilibrium while still working as
a gripper, but without sufficient air pressure to develop further leaks in that finger.
So the pneumatic system can operate for short periods with only minor functionality
loss when damaged. Short term operation of damaged fingers, with reduced pressure,
is thus possible. Many of these failure modes are mutual and assigned causes will be
imperfect. For example, additional gripping force can make some poorly positioned
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picks successful which otherwise are failures.

Outcome Straight Angled Straight
Percentage

Angled
Percentage

Success 4 27 20.0% 42.2%
Grip Force
Failure 7 5 35.0% 7.8%

Bad Positioning
Failure 6 9 30.0% 14.0%

Knocked Off
Target Failure 1 9 5.0% 14.0%

Gripper Failure 0 2 0.0% 3.1%
Other Failure 2 12 10.0% 18.8%
Total 20 64

Table 6.4 – Harvesting failure modes by picking motion

Many of the ‘other’ types of failures occurred with fruit in positions impossible to
properly reach using cartesian motions, including behind trellis wires or tree trunks.
One downside of the complex motion was increased fruit loss when grasps failed.
Failure of the straight detachment movement would often leave the target fruit on
the tree where human pickers could still collect it, but complex motion failures would
usually detach the fruit, dropping it to the ground. No fruit bruising or skin tears
were observed to be caused by either gripper during successful picks. Additionally, no
emergency stops were caused by soft gripper collisions, indicating that the assump-
tions in Section 5.2 are correct.

6.7 Field Trial Discussion

System performance in the commercial plum crop field trial was a long way from
commercial viability, but clearly identified challenges and opportunities for improve-
ment. The key assumptions around mixed obstacle operation using planning planes
and soft robotics were demonstrated to be accurate by not having any damaging
collisions when using this configuration. Modular system design allowed the gripper
hardware and motion type to be easily changed in the field. Additionally, valuable
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data on object picking motions for plums and fruit localisation methods was gathered.

One observation was the importance of frequent testing on realistic crop scenarios.
In both the lab and apple trials, an IBVS approach controller was essential to correct
for fruit movement during picking. When testing on plums, fruit motion was minimal
but dense leaf cover made the visual servoing approach counterproductive. This sort
of lesson can only be determined by realistic field testing, which is complicated by
the narrow picking window available each year and variety of trellis systems in use.

The EKF based continuous target tracking proved instrumental in accounting for poor
object detector performance, which is difficult to overcome in highly obscured culti-
vars. By integrating this continuous tracking system, other properties such as fruit
health, could be estimated in future by using multiple sensor views. Waterproofing
was a platform requirement that was unexpectedly tested, with several trial days lost
to heavy rain. The present hardware is only designed for light rain exposure which it
was able to operate in. While designing physically waterproof platforms and sensors
is not difficult, the sensing performance of that hardware in heavy rain, along with the
impact of altered friction properties on gripping, remains to be tested. Harvesting at
night was tested using artificial light, with no observed drop in effectiveness. Picking
often occurs overnight with human workers, to take advantage of lower temperatures
and calmer wind. During very hot days, harvesting is stopped as fruit bruise from the
pressure of being piled in picking bins. Use of artificial illumination, with high power
lights or strobes, can be applied during day operations but at the cost of additional
hardware, power use and complexity.

Offloading object detector inference work to the embedded computer is beneficial
for power use and loop time stability, which in turn is important for good EKF
functioning. Local network load induced by this was reasonable at 40 MB/s with
few efficiency optimisations within the tested code. Off the shelf computing and
open source software messaging frameworks, such as ROS, are now sufficient for both
developing and deploying agricultural robotics platforms unless power efficiency is of
particular concern. Performance of the YoloV3 model was a limitation and may be
linked to the embedded implementation used, as indicated by Section 4.2.
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Study of the two picking motions highlighted the importance of incorporating existing
harvesting and crop biomechanics knowledge. Even small changes to picking motion
took the soft gripper from a success rate of 20% to 42%. However, this also resulted in
longer pick time and increased abrasion of the soft fingers. Failure of these fingers was
a persistent issue, with 2 complete failures and 2 minor ones occurring over roughly
300 total trial picks. Each time a finger is compressed between the rigid gripper base
and wires or branches, minor damage results to the external tensioning fabric and
internal pneumatic bladder. These finger prototypes are a first iteration and can be
improved with more robust material selection. The parallel gripper was unusable
due to rigid component collisions causing frequent emergency stops. These stops are
additional to the failures reported in Table 6.3, meaning performance of this gripper
was poor even when collisions did not occur.

6.7.1 Plum Specific Observations

Harvesting conditions specific to plums, such as detachment force, close proximity of
fruit to their associated branches, and tendency for bunching, were all encountered,
highlighting the importance of testing autonomous systems on a wide range of crops.

Knocking surrounding fruit off when picking from a cluster is a problem. More regular
and evenly spaced flower thinning is an effective technique to reduce plum clustering.
So future efforts at picking clustered fruit should be assessed within ideally thinned
crops, and thinning alone may be enough to address the bulk of this problem. Prun-
ing strategies likewise influence the position of branch obstacles, flower clusters and
obscuring leaves. Careful pruning strategies may be able to increase the separation
between fruit and nearby obstacles, making harvesting an easier problem

During qualitative apple testing the final approach controller and gripper dimensions
were observed to be well suited to apples. So the soft gripper design was informed
by the fruit size, stem length, and separation of apples from branches, all of which
were reduced in the plum crop. This resulted in a slightly oversized gripper which
was partially remedied by the soft skirt attachment. Fruit proximity to obstacles
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significantly increased collisions while the stiffer and more lignified plum branches
made these more problematic. The same two conditions also made the IBVS approach
controller unnecessary for this plum cultivar. Detection of problematic fruit to avoid
pick attempts for, such as those behind branches or trellis wires, is a key future
functionality for the system. This could reduce the fruit lost, time wasted, and
gripper damage that results from attempting picks on unsuitable targets. By only
approaching fruit from the front, some targets may become harder to pick. The
impact of this in plum crops is unknown, but should be explored.

Fruiting wall forms of trellis appear well suited to autonomous harvesting of tree crops.
Assumptions of soft and hard obstacle planes held for this unmodified crop undergoing
normal commercial harvesting using human labour. Flower and fruit thinning directly
impact the fruit distribution, clumping and proximity to branches or trellis wires.
This makes it an essential consideration when assessing autonomous harvest success,
albeit a difficult to measure and rarely reported one. To address this, raw sensor data
for this trial is made available.12 Both Australian and international growers have
expressed a willingness to alter growing systems for more effective mechanisation,
and eventually, automation. Part of this task falls to the robotics community, who
must identify, test, and recommend suitable trellising systems for automated planting,
tending and harvesting of tree crops.

Cultural preference means some plum markets require stems left on, while others
remove them. The commercial crop tested on had no requirement for stem length, but
the preservation of stems during harvest for certain markets is a challenging robotics
task requiring either stem cutting or reliable detachment with the stem intact.

6.8 System Design Assessment & Discussion

Aside from gripper design, detector architecture and harvesting motion which are all
explicitly tested, this section provides an analysis of other design decisions following

12http://data.acfr.usyd.edu.au/Agriculture/PlumHarvesting/
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the field trial experiences. Environmental representation and partitioning, sensing,
control, and estimation all had impacts on performance. Some broader observations
regarding robotic G&M in agriculture are also made.

Considerable development and testing effort went into perception elements for the
system, including object detector selection, filter tunining, target localisation and
hardware calibration. By using modular systems, the slow to develop perception
components could be more easily reused between crop types. This would reduce
prototyping cost and time, while allowing for more rigorous assessment of gripper
and motion design choices for various crop types. One disadvantage of eye-on-hand
sensing is the dependence between actuation and perception, which makes simulating
actions difficult. For example, unit tests of the IBVS controller are not possible
without some form of perception running.

Combining primitive shapes with collision meshes proved to be an effective ER. No
collisions between modelled components, including the trailer, arm, gripper and trellis
wires occurred. All information required for the basic grasp planner, namely the fruit
centroid locations, was easily and efficiently stored, visualised and updated. The
minimal compute requirements for ER updates and storage also allowed more focus
to be placed on processor intensive sensor processing and perception. One downside
of the current ER is the lack of obstacle representation, some fruit are better accessed
from the left or right side and the ER does not currently store the location of branches
required to determine this.

Use of a restrictive RoI was effective for eliminating arm singularities in the approach
controller joint space, but did make the picking area quite small. The UR5 CB2
model used for development was slightly outdated at the time and the following CB3
model does support singularity avoidance while jogging joints. This would allow a
much expanded RoI. For harvesting, once a picking motion is determined a pri-
marily cartesian system can be built to support the required DoF, eliminating the
singularities and complex planning associated with articulated arms, while decreasing
actuation time.

While the embedded wide angle camera was not used, because the IBVS controller
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was ineffective, this sensor was valuable for assessing why picks failed and provides
a good view of fruit and finger positions within the gripper. This information is
normally obscured, making failure analysis difficult. Depth from stereo vision, as
implemented by the D435i, was effective and provided sufficiently accurate position
estimates for most fruit despite rain, darkness, direct sunlight, and moving leaves. In
future, this depth information can be used to estimate the distance to hard and soft
obstacle planes online. Being the first pipeline stage, sensing robustness is essential.
Fruit localisation reliability within plum crops is achieved by careful assessment of
the perception algorithms used, such as the object detector architecture study, and
by using well proven commercial sensing solutions.

Arm and gripper control presented no issues, force feedback from the parallel gripper
was beneficial for regulating fingertip pressure and detecting failed grasps. Incorpo-
rating sensing into soft robotics components is difficult, but these partially overcome
the need for feedback control by conforming to the fruit surface. A very low mod-
ulus of elasticity means strain due to mis-positioning or obstacles does not result in
significant stress applied to the fruit or finger. Tolerance of the soft gripper to poor
positioning offset some errors in the perception and actuation stages, successfully
gripping the fruit where rigid grippers are likely to have failed.

Filtering and estimation likewise can offset object detector errors by tracking fruit
which were occasionally missed by the detector. While more advanced frameworks
exist, the EKF approach to tracking is efficient and easily implemented. Variability
in sensor frame rates was not a problem, and the Euclidean distance metric for target
association worked well with minor tuning. The optimal value for this parameter is
crop dependent, so more robust approaches such as visual feature matching should
be investigated to remove that dependency.

Some lessons from agricultural tasks can be applied to robotic G&M in general. One
is the slow development that results from weather, seasonality, access, and ergonomic
challenges associated with field testing. As robotic platforms are increasingly de-
ployed to unstructured environments, the difficulty of effectively testing, debugging
and developing with unreliable internet connections, days lost to rain, screens un-
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readable in direct sunlight and similar factors should not be underestimated. Unlike
indoor environments, outdoor sensing can never be made entirely robust. There is al-
ways the possibility of a stray leaf, mud fleck or insect completely obscuring a sensor.
Detecting and intelligently handling these cases remains a challenge which is rarely
addressed in indoor robotics.

The results presented here are limited to a single season, and further testing in fol-
lowing harvest seasons, which occur annually for this cultivar, is important. Travel
restrictions due to Covid-19 prevented planned field work from taking place following
this trial, including follow up experiments on soft fruit harvesting.

Moving from human built to agricultural scenes also changes the form and appearance
of objects in sensor data. Most constructed items, from buildings to coffee cups, can
be described by a small number of geometric primitives making primitive or mesh
representations very efficient and allowing properties such as pose to be easily de-
fined. Trees, plants, and other natural objects follow much more complex, and often
fractal, geometries. This makes perfectly scanning and storing a tree using a mesh
representation very time and memory intensive. Even simple tasks, such as defining
a tree centroid for localisation require careful consideration, the centre coordinate of
bounding box extents will change rapidly as branches and leaves grow or fall season-
ally, the lower Z extent could be the ground plane or base of the root system. Wide
variation in objects, by the law of large numbers, leads to truly Gaussian distributions
for many more scene properties than built environments. This provides mathemati-
cal justification for the application of techniques which make Gaussian assumptions,
which is common in robotics perception and navigation algorithms.

Harvesting of soft skinned fruit varieties remains an unsolved problem, but our results
indicate that soft robotics components can go some way towards addressing the issues
of fruit damage and hard obstacle collisions.



Chapter 7

Conclusion

While numerous research works on autonomous harvesting exist, it remains an un-
solved and challenging problem. Interactions with soft fruit present additional com-
plexities atop the challenges of agricultural robotics, with additional difficulties not
seen in their harder skinned counterparts. This thesis seeks to fill gaps in robotics
knowledge relating to perception, localisation, control and hardware design for soft
fruit harvesting. Specifically, object detector architectures, gripper designs and mo-
tion selection for soft skinned fruit harvesting are examined. It is a first step in this
direction, with many more understandings around system design decisions for soft
fruit interaction yet to be learned.

In this work, an architecture is developed for testing algorithmic and software com-
ponents on the problem of soft fruit harvesting. This is applied to plums using a
prototype system, and is the first robotic harvester tested on that fruit type. The
modular and flexible development platform makes use of soft robotics components,
various perception techniques, and multi-stage fruit pose estimation within persistent
tracking & filtering frameworks. Detailed studies of module improvements are carried
out to support key system functions.

Following the analysis in Chapter 3, an environmental representation using meshes
and primitive shapes is chosen. This simple and efficient composite ER integrates
with three primary sensing cameras; a 3D camera for target localisation, a wide angle
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embedded camera for final approach control, and a platform tracking SLAM camera.
Stochastic regularisation techniques are applied to shape completion networks for effi-
cient stochastic object sample generation, allowing for grasp performance marginalisa-
tion over multiple object reconstruction hypotheses. However, this extends planning
time and is not expected to effectively reconstruct the complex and highly obscured
organic scenes observed during harvesting. Using a single range measurement is
shown to improve monocular depth inference in scenes with simulated ambiguous
global scale, but transfer learning of depth map inference from urban to agricultural
scenes will required additional datasets.

Fruit localisation is examined, beginning with object detection, then pose estimation,
filtering, and tracking. Object detector architectures for eye-in-hand harvesting data
are studied in detail. Modern detector architectures showed surprising results, with
performance rankings on a new eye-in-hand picking dataset not reflecting published
rankings on large computer vision datasets, such as COCO. Fusion of depth informa-
tion allowed for minor detector performance improvement, with data augmentation
being more beneficial.

The autocovariance least squares method is applied to position based visual servo-
ing to improve noise covariance matrix estimates in both EKF and MHE filtering.
Significant improvements were seen over grid search tuned filters in both simulated
and lab experiments. Using more accurate estimators for the ALS input data fur-
ther improved performance, though computational complexity restricts this to offline
use. Separately, non-greedy solutions to active perception planning are applied to
bearings-only fruit localisation using a 2D camera sensor and a gripper geometry
informed cost function. Optimally selecting sensor trajectories reduced the most im-
portant dimension of position estimate error by 99% and covariance by 75% compared
to a straight approach camera path.

Chapter 5 considers the grasping & manipulation challenges which are unique to
agriculture, such as mixed obstacles, fruit movement, and fragile targets. These are
addressed through careful trellis assumptions and planning constraints, online feed-
back control for picking, and soft robotics gripper components. An IBVS controller
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is developed for final approach positioning feedback. This proved to be essential for
effective picking during lab tests, but was not required on real plums due to their
short stems and close proximity to branches. An articulated CoBot arm is chosen for
safe operation around farm staff while allowing for motion flexibility, and a maximum
picking rate of 300 fruit per hour is estimated for this. Design considerations suggest
the use of a cartesian manipulator, once the required degrees of freedom for picking
motions are known.

Three stages of platform trials are carried out, culminating in a week long test of
harvesting an unmodified commercial plum crop in Swan Hill, Victoria. Specific
experiments regarding gripper design and picking motion for plums were conducted
as part of this trial. Coupling soft robotics components with constrained motion
planning and careful assumptions around hard and soft obstacle planes eliminated
damaging collisions. Such an approach is only possible with flat trellis structures, such
as the fruiting wall type. Tests using a rigid parallel gripper caused many collision-
induced emergency stops and was also less successful at picking fruit. Twisting and
angular motion during gripper retraction significantly improved the pick success rate
with qualitatively different performance to the longer stemmed apple crops seen in
system pre-trials. Observations such as these highlight the importance of testing
harvesters on less common crop types, while developing highly robust modules which
remain unchanged between crops, such as target filtering and tracking.

Overall performance remains a long way from commercial viability and the number
of pick attempts is an experimental limitation. This was driven by the small time
window for testing on ripe fruit, which makes extensively testing and iterating over
design decisions difficult. Covid-19 induced restrictions also limited further field tri-
als. Despite this, each system component performed its intended function and careful
design considerations resulted in hardware and algorithms able to harvest soft fruit.
Key development and deployment lessons include the importance of parameter visu-
alisation and tuning tools, appropriate trellis structure choice and persistent target
filtering to correct for detection errors. Commercial components provided robust and
cheap solutions for compute, power and some forms of sensing. Testing on soft skinned
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plums highlighted the benefits of soft robotics gripper components for avoiding fruit
damage and problematic obstacle collisions.

Broader questions remain to be answered regarding overall farm integration with
autonomous harvesters. One such issue is what percentage of fruit must be au-
tonomously harvested before combined efforts between human and robotic pickers
are no longer required, and what form this cooperation takes. The social implica-
tions of displacing large numbers of vulnerable seasonal worker jobs should not be
forgotten.

7.1 Contributions

An improved understanding of autonomous soft fruit harvesting is the main contri-
bution of this thesis, explored through the development, testing, and analysis of a
prototype plum harvester. Lessons around soft robotics components, mixed obsta-
cle planning, target filtering, active perception for harvesting and picking motion are
identified, which may also be applied to other less common tree crop types. Addition-
ally, this thesis has contributed theoretical improvements and experimental valida-
tions of core grasping and manipulation functional components used in autonomous
picking. These include

• EKF tuning process improvements for IBVS allowing for more accurate filter
estimates of fruit position to be developed in future.

• A detailed examination of object detection architectures for camera-in-hand
plum harvesting, including a new dataset and testing of depth fusion methods
for this application. This allows for more accurate fruit detection for harvesting.

• A new technique leveraging a single range measurement to improve monocular
depth map prediction for ambiguous scenes, allowing this technique to be better
applied to scenes where scale ambiguity may be present.
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• Improved stochastic object representation sampling methods, allowing for better
reconstructions of unseen object regions when reconstructing these. Along with
a method for marginalising grasps over these reconstructions, to select the best
grasp plan for partially obscured objects.

• Experimental validation of a soft gripper design and complex motion strategy
for plum harvesting.

7.2 Future Work

Autonomous harvesting platforms are close to commercial viability for some tree crop
types, but many remain unaddressed, and transferring techniques from a crop such as
apples to soft skinned plums is non-trivial. Additional factors including trellis type,
crop modifications, and the flower thinning regime, make benchmarking performance
difficult and are often not reported. Developing and rigorously testing harvesting
systems for less common crop types requires ongoing research. Two specific areas of
future work are; developing tools for online assessment of which fruit to avoid picking,
and improving feedback mechanisms during harvesting.

Not all fruit in a given region are suitable for picking. Many are behind hard obsta-
cles and will lead to collisions if attempted, so should be left for human workers or
approached from the opposite side. Identifying these requires the perception of hard
obstacles, a challenging research task. Other fruit should not be picked because they
are unripe, unhealthy or outside of required size bounds. All of these properties can
be determined using the RGBD camera data, although additional sensing modalities
for crop health assessment, such as brix meters, may hold value. Extending the sys-
tem with these capabilities will improve harvest quality while reducing picking time
spent on unsuitable fruit.

One beneficial property of plums is the lack of fruit movement during picking, due
to short stems and proximity to branches. This allowed open-loop approach con-
trollers to be used, however, better low-level sensing and feedback mechanisms would
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still allow more responsive positioning and mid-grasp adjustment. As an illustrative
example, tactile embedded sensing in the soft gripper fingers could allow pressure dis-
tribution to be monitored during a grasp. Fingers not in proper contact with the fruit
could be detected and further actuated to compensate for bad positioning. Feedback
control with embedded sensing would reduce the probability of missing or dropping
fruit during picking, while eliminating the risk of skin bruising.

Embedded tactile or force sensing for collisions could also reduce the gripper wear
caused by these. Currently this occurs using the UR5 arm force sensors, but collision
sensing within the fingers would allow the motion to be stopped or adjusted earlier,
with less damaging deflection of the soft fingers.

Addressing these areas is one step along the path to efficient and sustainable au-
tonomous farming, where fruit are monitored, managed, cared for, and harvested at
an individual level.
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