
1444 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 6, DECEMBER 2016

Distributed Coverage Estimation and Control
for Multirobot Persistent Tasks

José Manuel Palacios-Gasós, Student Member, IEEE, Eduardo Montijano, Member, IEEE,
Carlos Sagüés, Senior Member, IEEE, and Sergio Llorente

Abstract—In this paper, we address the problem of persistently
covering an environment with a group of mobile robots. In contrast
to traditional coverage, in our scenario the coverage level of the
environment is always changing. For this reason, the robots have
to continually move to maintain a desired coverage level. In this
context, our contribution is a complete approach to the problem,
including distributed estimation of the coverage and control of the
motion of the robots. First, we present an algorithm that allows
every robot to estimate the global coverage function only with local
information. We pay special attention to the characterization of
the algorithm, establishing bounds on the estimation error, and we
demonstrate that the algorithm guarantees a perfect estimation in
particular areas. Second, we introduce a new function to determine
the possible improvement of the coverage at each point of the
environment. Upon this metric, we build a motion control strategy
that drives the robots to the points of the highest improvement while
following the direction of the gradient of the function. Finally, we
simulate the proposal to test its correctness and performance.

Index Terms—Distributed systems, multi-robot systems,
persistent coverage.

I. INTRODUCTION

R ECENT advances in mobile robotics and an increasing
development of affordable autonomous robots have mo-

tivated an extensive research in multirobot systems. A partic-
ularly interesting problem is the coverage problem, that aims
to cover a given environment with a team of robotic agents.
This problem is of special interest in many applications such
as vacuuming [1], cleaning a place where dust is continuously
settling [2], lawn mowing [3], or environmental monitoring [4],
[5]. More recently, the apparition of useful unmanned aerial ve-
hicles (UAVs) has encouraged the application of the coverage
problem to surveillance and monitoring [6].

The approaches to the coverage problem can be classified
into three different categories, static, dynamic, and persistent

Manuscript received December 23, 2015; revised May 15, 2016; accepted
July 15, 2016. Date of publication October 20, 2016; date of current version
December 2, 2016. This paper was recommended for publication by Associate
Editor P. Robuffo Giordano and Editor T. Murphey upon evaluation of the re-
viewers’ comments. This work was supported in part by the projects RTC-2014-
1847-6 of Retos-Colaboración and DPI2015-69376-R (MINECO/FEDER),
CUD2013-05 and in part by a Gobierno de Aragón Scholarship C076/2014,
partially funded by European Social Fund.

J. M. Palacios-Gasós and C. Sagüés are with Instituto de Investigación
en Ingenierı́a de Aragón, Universidad de Zaragoza, Zaragoza 50018, Spain
(e-mail: jmpala@unizar.es; csagues@unizar.es).

E. Montijano is with Centro Universitario de la Defensa and Instituto de
Investigación en Ingenierı́a de Aragón, Universidad de Zaragoza, Zaragoza
50018, Spain (e-mail: emonti@unizar.es).

S. Llorente is with the Department of Research and Development, Induc-
tion Technology, Product Division Cookers, BSH Home Appliances Group,
Zaragoza 50016, Spain (e-mail: sergio.llorente@bshg.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2016.2602383

coverage. Nonetheless, they are closely related. In many cases,
the same problem can be stated as the three of them depending
on the objective, solutions can be extended from one approach
to the others with slight adaptations, and most of the tools are
useful for all of them. In the first place, the static coverage or
deployment problem seeks to determine the optimal positions of
a group of robots to cover an environment. This approach [7], [8]
is based on the locational-optimization theory, whose objective
is to allocate resources in an area according to a fixed criterion,
e.g., mail boxes in a city [9]. The second approach is dynamic
coverage, in which the robots must cover the entire environment
at least once or until a desired coverage level is reached to
consider the task finished. Typically, the goal of this approach
is to minimize the time and energy consumption needed to
complete the task [10], [11].

The last approach is the persistent coverage problem, in which
this paper focuses. The aim of persistent coverage is to main-
tain a desired coverage level over the environment. Persistent
coverage differs from static and dynamic coverage in that the
coverage of the environment persistently decays and the robots
have to continually move to maintain the desired level, i.e.,
it requires repetition and redundant actions. Therefore, in this
case, the task can generally never be completed. Note that static
and dynamic coverage may need to be repeated or maintained
if the environment changes and, thus, become persistent static
coverage and persistent coverage, respectively.

From a practical point of view, the coverage level can be seen
as a physical quantity such as the temperature while heating a
place or the level of water while watering crops. These magni-
tudes deteriorate over time due to physical phenomena such as
cooling or evaporation. It can also be seen as the quality of a
measurement and, in this sense, persistent coverage is often ad-
dressed as persistent surveillance or environmental monitoring,
especially with UAVs [6]. The problem is also strictly related
to the patrolling problem [12]–[14], although patrolling may
require awareness of the behavior of adversaries as in [15].

The solutions to the persistent coverage problem intend to
derive results which are applicable for infinite time. Hokayem
et al. [16] have the objective of revisiting every point periodi-
cally. However, they do not consider explicitly a decay of the
coverage. The approach from [17] considers a decay, called
awareness, and only requires full awareness in some points
while revisiting all points periodically. An optimal control so-
lution is presented in [18] to minimize the uncertainty in a one-
dimensional field. This uncertainty increases constantly with
time and is reduced over the range of the sensors. An optimal
solution is also found for the discretized problem in [19] using
a Branch-and-Bound algorithm. In [20], the objective of a team
of UAVs is to minimize the maximum time between visits to all
cells of the environment. This type of solutions are also derived
for the patrolling problem. In [14], a Voronoi partition is used to

1552-3098 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

PALACIOS-GASÓS et al.: DISTRIBUTED COVERAGE ESTIMATION AND CONTROL FOR MULTIROBOT PERSISTENT TASKS 1445

partition the environment and each agent follows goals to cover
its own region.

Other solutions are focused on computing the trajectories
which robots follow [12], [13]. These paths can be used to com-
pute a speed controller to keep the coverage level within desired
limits [21]. With the objective of finding optimal closed paths,
Rapidly-exploring Random Trees are used in [22] to sense a
dynamic Gaussian random field of the environment that evolves
over time. Soltero et al. in [23] develop an online adaptive path
planning algorithm based on gradient descent of a Voronoi-
based cost function that simultaneously allows the robots to
explore the regions of interest in an unknown environment and
to calculate their paths. In [24], Lin et al. address the problem
of their previous work [18] in a two-dimensional space and for-
mulate a parametric optimization to determine a set of elliptical
trajectories for the robots. Alamdari et al. [25] plan paths inside
the graph of regions of interest to minimize the time between
visits.

Since planning optimal trajectories usually requires the so-
lution of an intractable dynamic program (DP), other works
compute suboptimal paths. In [26], a gradient descent method
together with a centralized assignment of objectives is proposed
and a variable coverage action is introduced. Hubel et al. [27]
tackle a similar problem in which the coverage reaches an upper
bound on the objective and the interest of the environment varies
with time. In [28], they solve approximately over a finite-time
horizon the DP, whose optimization criterion is the minimum
uncertainty of a field estimate.

A typical assumption in the approaches to the coverage prob-
lem is the exact knowledge of the coverage levels of the whole
environment that permits the calculation of the motion of the
robots. One alternative to collect this information is to commu-
nicate each production or measurement of every robot through
the network labeled with a robot identifier and a time stamp.
Then each robot is capable of retrieving the actual coverage
map using all the received information. However, this infor-
mation exchange can be challenging when dealing with large
environments, large and changing robotic networks or when the
team of robots has limited communication capabilities. There-
fore, distributed estimation strategies where the information is
synthesized instead of accumulated become more appropriate
for this problem. In terms of estimation, in [29], the environment
is parameterized by a set of basic functions, which are estimated
by using a continuous-time PI-consensus algorithm [30]. A dis-
tributed interpolation scheme is used in [31] with a Kalman-like
formulation and compression of the data. Although their per-
formance is good, these approaches do not take into account
how the actions of the robots modify the coverage level of the
different areas of the environment.

A. Contributions

In this paper, we address the persistent coverage problem
in which the coverage level of the environment decreases over
time and the robots are capable of increasing it as in heating or
watering applications. We propose a solution with a distributed
robotic network that presents the following main contributions:

Our first contribution is an algorithm to estimate the coverage
of the environment using only local information. The algorithm
is based on distributed max-consensus combined with additive
inputs given by the actions of the robots. Although we do not
consider delays, noise or uncertainties in the parameters, we

use the term estimation as in deterministic problems of control
theory such as state observers [32]. We provide bounds on the
estimation error of the robots for any point of the environment
and characterize the set of allowable actions that ensure that
each robot maintains a perfect estimation within a certain area,
that we call reachable area. Moreover, we characterize the area
in which there is no estimation error for any possible action. The
main contributions and additions with respect to the preliminary
version of this part of the work that appeared in [33] are the
following:

1) A deeper revision of the state of the art is presented.
2) Regarding the estimation algorithm, we extend the results

to the reachable area of the robots that is larger than the
zero-error area.

3) In this paper, we include several proofs that do not appear
in [33], specifically the proofs of Lemmas IV.1 to IV.3.

4) In the simulation part, we report more rigorous and de-
tailed results, including the influence of the parameters.

The second contribution is a distributed strategy to control
the motion of the robots that combine a goal-oriented term
and a gradient term. Both terms are based on a new metric,
called Improvement Function. This metric characterizes how
profitable it is in terms of coverage to locate a robot at a spe-
cific position. Upon this metric, we build an algorithm that
allows each robot to locally determine the goals that it has to
follow as the points with the highest improvement value. The
goal-oriented term that we propose drives the robots to these
goals while following the direction of the gradient of the Im-
provement Function from the other term. This avoids revisiting
well-covered areas and drives the trajectories through uncovered
areas. The proposed motion control law, even though it is based
on heuristics, addresses an NP-hard problem, is fully distributed,
accounts for the quality of the estimation and shows good
performance.

The remainder of the paper is structured as follows: Section II
presents a discrete-time formulation of the persistent coverage
problem. The description of the algorithm for the local map
update is in Section III. The behavior of the algorithm is char-
acterized in Section IV. Section V introduces the motion law
to control the movement of the robots. The performance of
the whole approach is analyzed in simulations in Section VI.
Section VII gathers the conclusion of this paper. Finally, in or-
der to facilitate the reading, the proofs of most theoretical results
are in the appendices of the paper.

II. PROBLEM FORMULATION

To formulate the problem of persistently covering an environ-
ment with a team of robotic agents, we develop the formulation
in discrete time due to the fact that a distributed system requires
discrete communications.

Let Q ⊂ R2 be a bounded environment which a team of
robots has to persistently cover. The team consists of N ∈ N
mobile robots. We assume that they are holonomic:

pi(k) = pi(k − 1) + ui(k − 1)

where pi(k) ∈ Q is the position of robot i at time k ≥ 1 with
i ∈ {1, . . . , N}. The maximum distance that a robot can move
in one step is umax , i.e., ‖ui(k)‖ ≤ umax .

The robots form a network defined by a communication graph
Gcom(k) =

(
V (k), E(k)

)
. The vertices V (k) of the graph are

the positions pi(k) of the robots. To define the edges E(k),

1446 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 6, DECEMBER 2016

we let rcom > 0 be the communication radius, the maximum
distance between two robots at which they can communicate.
We assume it constant and equal for all the robots. With this
radius, an edge (i, j) ∈ E(k) if ‖pi(k) − pj (k)‖ ≤ rcom. Ad-
ditionally, Ni(k) = {j ∈ {1, . . . , N} | (i, j) ∈ E(k)} are the
neighbors of robot i at instant k.

Depending on the motion of the robots, the communication
graph could end up being disconnected. In this paper, we assume
that this is not the case, and we assume that it remains connected
at all times even though the graph topology can change over
time. This could be achieved, for example, by including in the
motion of the robots connectivity constraints such as [34] and
[35]. Nevertheless, a more relaxed assumption such as periodic
joint connectivity [36], [37] could be made, where the union
of the disconnected communication graphs would become con-
nected at most every T instants.

The communication in the network is considered synchronous
and not affected by delays or noise, assuming this can be pro-
vided by a synchronizer [38]. Moreover, the presence of ob-
stacles does not affect the communication capabilities of the
network, i.e., two robots keep in communication even if there is
an obstacle between them.

The coverage of the environment is modeled with a time-
varying field, Z(q, k), which we call coverage function or global
map indistinctly. This field represents a physical quantity in per-
sistent coverage applications, such as temperature while heating
a building or level of water in a field or in flowerpots while wa-
tering. The aim of the robotic team is to maintain a desired
coverage level, Z∗(q) > 0, ∀q ∈ Q. We will alternatively re-
fer to this function as an objective map.

To reach this aim, the robots are able to generate an increase
on the coverage level at each time instant. Depending on their
position, pi(k), each robot has a coverage area, Ωi

(
pi(k)

)

⊆ Q, which is bounded by a circle of radius rcov
i centered at

pi(k), although it is not necessarily circular, convex, or equal
for all the robots. In this area, a robot increases the value of
the coverage by αi

(
q,pi(k)

)
> 0, which we call production.

For the rest of the points of the environment, i.e., the ones that
are not covered by robot i, we consider that αi

(
q,pi(k)

)
= 0.

From now on, we will denote Ωi(k) ≡ Ωi

(
pi(k)

)
, αi(k) ≡

αi

(
q,pi(k)

)
and α(k) ≡

∑
i∈{1,...,N } αi(k).

On the other hand, as time goes by, the coverage level of a
given point decreases according to a constant decay gain d(q),
with 0 < d(q) < 1. Thus, the coverage function at time k is

Z(q, k) = d(q)Z(q, k − 1) + α(k). (1)

For clarity, in the rest of the paper, we omit the dependency
of q unless it is strictly necessary, i.e., Z(q, k) ≡ Z(k) or
Z∗(q) ≡ Z∗. Note that the coverage level of the environment is
bounded by 0 ≤ Z(k) ≤ max α(k)/(1 − d). This definition of
the evolution of the coverage is suitable for applications such
as heating a place or watering crops. It differs from alternative
formulations as in [21], where the coverage level increases over
time and is decreased by the robots.

It is clear that any control policy that aims to make Z(k) equal
to Z∗ will consider the coverage level in the design of the inputs
of the robots. However, in (1), we observe that the value of Z(k)
depends on the coverage actions of all the robots. This represents
an obstacle in a distributed scenario, where a robot may not
be in direct communication with all the others and may only

Algorithm 1: Local Map Update.
1: – Step 1:
2: Calculate map-to-communicate Zcom

i (k), (2).
3: Communicate map to neighbors.
4: Update local map Z−

i (k), (3).
5: – Step 2:
6: Extract overlapped production βi

(
q,pi(k)

)
, (4).

7: Communicate regions to neighbors.
8: Update local map Zi(k), (5).

have partial information of the environment. For this reason, a
distributed approach to the persistent coverage problem requires
every robot to have an estimation of the coverage function of
the entire environment as well as a control policy aware of it.

III. LOCAL ESTIMATION OF THE COVERAGE

In order to allow each robot to have an accurate estimate of the
coverage field we introduce a distributed estimation algorithm
that only uses information provided by direct neighbors in the
communication graph.

Assumption III.1: We assume that robots with overlapping
coverage areas can communicate, i.e., rcom > 2rcov

max , where
rcov
max = maxi∈{1,...,N } rcov

i .
The local estimation of the coverage function of each robot

is Zi(q, k), that we call local map. Each robot updates its local
map using the information received from its current neighbors,
which may include the local map and, in some cases, the cov-
erage function of the neighboring robots. Before presenting our
updating algorithm, let us introduce an assumption referring to
the initial estimation.

Assumption III.2: We assume that at the initial time, the
robots know the actual coverage level, i.e., the estimation of
every robot is correct: Zi(0) = Z(0), ∀q ∈ Q.

Now we present in Algorithm 1 our two-step updating strategy
along with an illustrating example in Fig. 1. In this example, we
have the global coverage map Z(k) in Fig. 1(a) and we refer to
the estimation of robot 1.

The intuitive idea of this algorithm is the following: we ex-
tract in Step 1 the additions that the neighbors have already gath-
ered, both from their productions and from other robots, and we
take into account the overlappings to correct the estimation in
Step 2. In fact, the objective of this update is to keep the esti-
mation as close to the actual value as possible without overesti-
mating it.

In the first step, at each communication time, k, each robot
generates its map-to-communicate, Zcom

i (k) (Fig. 1(b) in exam-
ple), as the map of the previous time instant with its decay plus
its current production

Zcom
i (k) = dZi(k − 1) + αi(k) (2)

where we assume that the decay rate is known by the robots.
Note that at time k each robot includes the production of the
same time instant k. Therefore, there is no delay or offset in the
estimation.

Each robot sends its map-to-communicate to its neighbors
and receives their maps. With this information, the first step
of the update is performed dividing the map into two parts: the
coverage area, Ωi(k), and the rest of the map. The robot updates

PALACIOS-GASÓS et al.: DISTRIBUTED COVERAGE ESTIMATION AND CONTROL FOR MULTIROBOT PERSISTENT TASKS 1447

Fig. 1. Example of the estimation algorithm at time k. (a) Global coverage map, Z(k). The coverage area of robot 1 is represented with a dashed yellow
circumference and its communication area with a dash-dotted one. (b) Map-to-communicate of robot 1, Z com

1 (k). (c) Map calculated by robot 1 in the first update
step, Z−

1 (k). (d) Estimation of the coverage map of robot 1, Z1 (k). The orange areas coincide with the overlapped productions of the robots, βi (k).

each region separately according to

Z−
i (k) = Zcom

i (k) +
∑

j∈Ni (k)

max
(
Zcom

j (k)

− dZi(k − 1), 0
)
, ∀q ∈ Ωi(k) (3a)

Z−
i (k) = max

j∈Ni (k)

(
dZi(k − 1), Zcom

j (k)
)
, ∀q /∈ Ωi(k). (3b)

For the update (3a) robot i adds its map-to-communicate (2) to
the contributions of its neighbors. The contribution of a neighbor
j can be calculated as the difference Zcom

j (k) − dZi(k − 1),
as the orange area of Fig. 1(c). To prevent this difference from
being negative, we use the maximum function. This may happen
when the estimation of robot j is smaller than the estimation of
robot i as in the following situation. Let robot i be overlapped
with a robot � that is not a neighbor of robot j, i.e., j, � ∈ Ni(k)
and j /∈ N�(k) ⇔ � /∈ Nj (k). The estimation Zcom

j (k) may be
lower than dZi(k − 1) in the overlapping region Ωi(k) ∩ Ω�(k)
since the production of robot � at time k is not available to robot
j. This would happen to the estimation of robot 2 in Fig. 1(a)
at the next iteration. It would be overlapped with robot 1 and in
direct communication with robot 6, while 1 and 6 would not be
neighbors.

In the second part of the local map update (3b), each robot
updates its local map outside its coverage area, q /∈ Ωi(k), as
the maximum of the received values and its own. Such value cor-
responds to the latest information of this robot or its neighbors.
This update underestimates the coverage level when two or more
neighbors are overlapping outside the coverage area of a robot
as in Fig. 1(c). In that situation only the highest contribution is
considered and not the addition of all of them.

To counteract this error, a second updating step is executed.
At first, each robot extracts the region of its coverage area that
is overlapped with the one of another robot, and then sends its
coverage function in this region to its neighbors

βi(k) ≡ βi

(
q,pi(k)

)
= αi

(
q,pi(k)

)
, ∀q ∈ Ωo

i (k) (4)

where Ωo
i (k) =

{
q ∈ Ωi(k) ∩ Ωj (k) | j ∈ Ni(k)

}
is the over-

lapped area of robot i with its neighbors. Robot i deter-
mines its own overlapped area as Ωi(k) ∩ Ωj (k) =

{
q ∈

Ωi(k) |Zcom
j (k) − dZi(k − 1) > 0

}
, ∀j ∈ Ni(k).

The robots exchange the overlapped productions with their
neighbors and, with the received ones, they perform the final

update

Zi(k)=

⎧
⎪⎨

⎪⎩

Z−
i (k), ∀q∈Ωi(k)

Z−
i (k)− max

j∈Ni (k)
βj (k)+

∑

j∈Ni (k)

βj (k), ∀q /∈Ωi(k).

(5)

This final step adds the contributions that are not considered in
the first and ends the estimation, as shown in Fig. 1(d).

Note that our local map updating strategy from Algorithm 1
satisfies the following property:

Zi(k) ≥ dZi(k − 1), ∀q ∈ Q. (6)

Also note that the presence of obstacles or a nonconvex envi-
ronment would not affect the estimation algorithm according to
the communication policy.

Our algorithm permits that each robot locally decide which
points of its own production are of interest and discards the rest
in a communication-effective solution. Nevertheless, slightly
different rules could be applied to estimate the coverage but,
in that case, different information should be exchanged. For in-
stance, another estimation strategy could exchange the coverage
αi and forward the received αj . However, this alternative would
require a trace of which productions have been included and
forwarded, several communication rounds at each iteration and
an increased communication expense.

IV. CHARACTERIZATION OF THE ESTIMATION

We characterize now the accuracy of the estimation using our
algorithm. In the first place, we determine the allowable actions
of each robot in order to guarantee that the estimation is equal
to the global map inside what we call the zero-error area and the
reachable area of the robots. Next, we delimit the areas in which
a correct estimation is guaranteed regardless of the movement of
the robots. Finally, we establish bounds to the estimation error
in all the points of the environment.

Let us begin defining the zero-error area of robot
i, Ωz

i (k) =
{
q ∈ Q | ‖q − pi(k)‖ < rcom − rcov

max
}

, that con-
tains the points in which our algorithm guarantees a correct
estimation. These are the points of the environment that can be
covered by another robot only if it is a neighbor of i at each
time. In Fig. 2, an illustrative example of this area is shown.

We also define the reachable area of robot i, Ωr
i (k),

that comprises the points of the environment that can
be reached by the zero-error area with the action calcu-
lated at time k, Ωr

i (k) =
{
q ∈ Q | ‖q − pi(k)‖ < rcom − rcov

max
+ umax

i (k)
}
, where umax

i (k) is the maximum action of robot i.

1448 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 6, DECEMBER 2016

Fig. 2. Example of zero-error area (red) for the robot depicted in yellow.

Let us introduce now some useful results in the following
lemmas to demonstrate the correctness of the estimation in these
points in Theorem IV.4. First, we prove that a correct estimation
at a time k − 1 in Ωr

i (k − 1) leads to a bounded estimation in
all the environment at time k and also to a correct estimation
in Ωz

i (k) so that the update of the algorithm does not introduce
an error in the current zero-error area.

Lemma IV.1: For any iteration k, consider that at the previous
iteration the estimation of the coverage map of a robot i is equal
to the global coverage map inside its reachable area

Zi(k − 1) = Z(k − 1) ∀q ∈ Ωr
i (k − 1). (7)

Then the execution of Algorithm 1 leads to a bounded estimation
in all the environment, Zi(k) ≤ Z(k) ∀q ∈ Q, and does not
introduce an error in the estimation inside the zero-error area,
Zi(k) = Z(k) ∀q ∈ Ωz

i (k).
Proof: See Appendix A. �
Next, we prove that the estimation at a particular time

takes into account all the productions from at least N − 1
instants before. To do so, we denote the diameter of the
communication graph as diam

(
Gcom(k)

)
that is bounded by

1 ≤ diam
(
Gcom(k)

)
≤ N − 1. Thus, the maximum time that

the production of a robot needs to propagate through the entire
network is equal to the number of robots minus one.

Lemma IV.2: Consider that for any iteration k − N , the es-
timation of the coverage map of all robots is equal to the global
coverage map inside their reachable area, Zi(k − N) = Z(k
− N) ∀q ∈ Ωr

i (k − N). Then, according to Algorithm 1, the
production of the robots developed at time instant k − N + 1,
i.e., α(k − N + 1), does not induce an error in the estimation
of the coverage at time k, i.e., in Zi(k), i ∈ {1, . . . , N}.

Proof: See Appendix B. �
The third result establishes bounds in the motion of each

robot in order to assure that its zero-error area does not reach
the production of other robots which were not its neighbors at
the previous time.

Lemma IV.3: Let Ωρ
i (k) be a circle of center pi(k) and ra-

dius ρi(k) − rcov
max . ρi(k) = minj,� ‖pi(k) − pj (�)‖, with j /∈

Ni(k) and � > 0, � ∈ {k − N + 1, . . . , k}, is the minimum dis-
tance from the current position of robot i to any of the last N − 1
positions of other robots j that are not neighbors of i at iteration
k. If the motion of robot i at time k satisfies that

‖ui(k)‖ ≤ umax
i (k) = min

(
umax , ρi(k) − rcom

)
(8)

then αj (�) = 0 ∀q ∈ Ωr
i (k), with j /∈ Ni(k) and � > 0, � ∈

{k − N + 1, . . . , k}.
Proof: See Appendix C. �
In practice, the restriction that the previous lemma establishes

on ‖ui(k)‖ may be stronger than needed, since the direction of
the movement may direct the robot to a place with no possible
error, while the module of the action restricts such movement.
Therefore, this restriction should only be applied depending on
the direction of the motion.

These results allow us to introduce the theorem that guaran-
tees a perfect estimation of the coverage in the reachable area
of the robots at every time. This theorem proves the hypothesis
of Lemmas IV.2 and IV.1.

Theorem IV.4: If Assumptions III.1 and III.2 hold and the
motion of the robots satisfies (8), then, according to Algorithm 1,
the local map is equal to the global coverage map at time instant
k inside the reachable area of the robot, Zi(k) = Z(k), ∀q ∈
Ωr

i (k).
Proof: See Appendix D. �
We can now extend the area in which a robot has no esti-

mation error at each time depending on the positions of the
non-neighbors.

Corollary IV.5: Considering the same as in Theorem IV.4,
the local estimation of the coverage map of any robot i is equal
to the global map insideΩρ

i (k), Zi(k) = Z(k), ∀q ∈ Ωρ
i (k).

Proof: The same proof as for Theorem IV.4 can be applied
here using Ωρ

i (k) instead of Ωr
i (k). �

The previous results guarantee a zero estimation error in a
region that depends on the positions of the robots that are not
neighbors, m /∈ Ni(k), at each time k. However, in a distributed
approach, a robot does not know such positions. Regardless of
the motion of the robot and the positions of the other robots
there is a region, presented in the following theorem, in which
zero error is guaranteed.

Theorem IV.6: Let r∗z =rcom−rcov
max−(N − 1)umax . Then, if

Assumptions III.1 and III.2 hold, Algorithm 1 guarantees that
Zi(k) = Z(k), ∀q ∈ Q | ‖pi(k) − q‖ < r∗z .

Proof: See Appendix E. �
Finally, we set bounds to the estimation error in all points.
Theorem IV.7: Consider that Assumptions III.1 and III.2

hold. Also consider that the maximum value of the produc-
tion function of every robot is P = maxi∈{1...,N } αi(k). Then,
according to Algorithm 1, the error of the local estimation of
the coverage map for all k > 0 is bounded by

0 ≤ Z(k) − Zi(k) ≤ P (N − 1)
1 − dN

1 − d
. (9)

Proof: See Appendix F. �
The bound in (9) can also be modified to take into account

disconnected networks under the standard assumption of peri-
odic joint connectivity [39], which supposes the union of the
disconnected communication graphs from a connected one at
most every T instants.

Remark IV.8: Consider the same as in Theorem IV.7 and
also consider periodic joint connectivity of the network. Then,
according to Algorithm 1, the error of the local estimation of
the coverage map for all k > 0 is bounded by

0 ≤ Z(k) − Zi(k) ≤ P (N − 1)
1 − dT N

1 − d
.

PALACIOS-GASÓS et al.: DISTRIBUTED COVERAGE ESTIMATION AND CONTROL FOR MULTIROBOT PERSISTENT TASKS 1449

V. MOTION CONTROL

Finding the optimal actions in a coverage problem is NP-
hard [21] and, thus, we propose a heuristic strategy to control the
motion of the robots that makes use of our distributed estimation
algorithm.

To build this solution, we introduce a new metric that charac-
terizes how profitable it is to locate a robot at a specific position
in terms of the coverage level. We call this metric Improve-
ment Function. Then we divide the environment using a dis-
tributed Voronoi partition that provides each robot with a safe
region where there is no interference with other robots. Inside
this region, each robot can safely determine the goal that leads
its movement as the maximum of the Improvement Function.
Finally, their motion is guided by a control law combining a
gradient-based and a goal-oriented action.

A. Improvement Function

An approach to control the motion of the robots is to define
goals to which the robots must move. These goals could be se-
lected randomly according to a sampling-based motion planning
algorithm [40]. However, for the distributed coverage problem,
these goals must be points that provide the maximum improve-
ment of the coverage according to the local information of the
robots. To find them, we introduce a new metric that character-
izes how profitable it is to locate a robot at a specific position,
p ∈ Q, in terms of the coverage estimated by the robots. We
call this metric Improvement Function

Mi(p, k) =

∫

Ω i (p)

Z∗ − Zi(k)
Z∗ Φ(q)αi(q,p) dq

∫

Ω i (p)
Φ(q)αi(q,p) dq

(10)

where Φ(q) ∈ (0, 1] is a weighting function to adjust the impor-
tance of covering each point. This metric computes the integral
of the normalized coverage error

(
Z∗ − Zi(k)

)
/Z∗ weighted

with the production of a robot located in p, αi(q,p), and nor-
malizes it to obtain a value independent of the production func-
tion. Note that Mi(p, k) ≤ 1 by definition. Its value is between
0 and 1 when the coverage area around the point p is slightly
covered and below zero when it is overcovered. According to
this definition, the goal of a robot at each time instant is the
point where this function reaches its maximum.

B. Distributed Partition of the Environment

The local Improvement Function (10) may not allow the
robots to find the actual maximum improvement since it only
uses a local estimation, Zi(k). Additionally, the selection of
goals in any part of the environment may lead to long and un-
necessary shifts, redundancy, or even collisions. The solution
to these problems is to assign particular regions to the robots
in which they are responsible for the coverage. This can be
achieved partitioning the environment in a distributed fashion.
In particular, we choose a distributed Voronoi tesellation. It is
a well-known technique that associates to each robot its closest
points of the environment.

The estimation of the coverage is always guaranteed to be
exact within the zero-error area of the robots when their motion
satisfies (8) and, since the size and shape of this region is con-

stant, we reduce the Voronoi region to the intersection with this
area, resulting in the r-disk Voronoi partition [41]

Vi(k) = {q ∈ Ωz
i (k) | ‖pi(k) − q‖ ≤ ‖pj (k) − q‖ ∀j
= i}.

This region, though little conservative in some cases, presents
following advantages:

1) It has been successfully applied in solutions to the static
and dynamic coverage problems [7].

2) It prevents the robots from selecting as goals points in
which the estimation is not exact, since inside Ωz

i (k), the
estimation is always correct.

3) It overcomes the problem of long shifts, since each robot
chooses goals only in its proximity.

4) It inherently prevents collisions, since each robot has an
exclusive region.

When the motion is unrestricted a region of radius r∗z should
be used to guarantee a correct estimation inside the r-disk
Voronoi cell but depending on the parameters of the system,
r∗z and the partition might be small.

It should be noted that any other partition method such as
power diagrams [42] or K-Means clustering [43] could be used.
The partitions could also be combined with some task assign-
ment procedure [44] to consider in the problem the optimization
of some global metric, e.g., total distance traveled by the robots,
at the expense of some additional coordination. In fact, the se-
lection of the distributed partition method is independent of the
rest of the elements considered in the distributed strategy to
coordinate the robots.

C. Goal-Oriented Control

The goal-oriented control aims to direct the robots to areas
where the Improvement Function is maximized. The direction
in which each robot moves toward its goal is

ugoal
i (k) = g∗

i (k) − pi(k) (11)

where g∗
i (k) is the goal of robot i at time k.

In accordance with the Improvement Function (10), the goal
should be the point q, where it reaches its maximum value inside
the Voronoi region

g∗
i (k) = arg max

q∈V i (k)
Mi(q, k).

However, this point may not exist or may not be unique, for in-
stance, when there are several points uncovered, or may change
every iteration, leading to undesirable oscillations or cyclic be-
haviors. To cope with these problems, we maintain a list of
possible goals, Li(k), that is updated every iteration and from
which the current goal is selected.

In our solution, any goal gi ∈ Li(k) must be inside the
Voronoi partition, gi ∈ Vi(k), and must be undercovered,
Mi(gi , k) > 0. Therefore, the first step is to check if the goals
from the list of the previous iteration, gi ∈ Li(k − 1), are still
feasible, including if they have been reached

gi is feasible ⇐⇒
Mi(gi , k) > 0 ∧ gi ∈ Vi(k) ∧ ‖gi − pi(k)‖ > E (12)

where E is the distance at which a goal is considered reached.
Whenever a goal stops satisfying these criteria, it is removed
from the current list Li(k).

1450 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 6, DECEMBER 2016

Next, we define a region in which new possible goals are
searched as

Ri(k) = Vi(k) \ Ωi

(
pi(k)

)
\ Ωi(gi) (13)

that includes all points of the Voronoi region that are not in
the coverage area of the robot centered at pi(k) or at any gi ∈
Li(k). Note that in the initialization step for Li(1), the search
region is Ri(1) = Vi(1), and that each new possible goal found
in the search region meets the distance requirement

g2
i /∈ Ωi(g1

i) (14)

with g1
i , g2

i any pair of possible goals in Li(k).
Each robot iteratively looks for new possible goals inside

Ri(k), that are global or local maxima or quasi-maxima of the
Improvement Function. The set of these points is

Pi =
{
p ∈ Ri(k) |Mi(p, k) ≥ Mi(p + ε, k)

}
(15)

which can be found using state-of-the-art methods such as pat-
tern search. Any p ∈ Pi must also satisfy Mi(p, k) > 0. Nev-
ertheless, from this set only the nearest point to the robot is
selected as a new possible goal

gi = arg min
p∈P i

(‖p − pi(k)‖). (16)

This point, gi , is the most interesting of the current search region
both in terms of the Improvement Function and in terms of the
time until it can be covered. Thus, it is appended to the current
list of goals, Li(k), and the points close to it are eliminated from
the search region to keep satisfying (14)

Ri(k) = Ri(k) \ Ωi(gi). (17)

The search is repeated until Ri(k) is empty or there are no
more points with a positive value of the Improvement Function
and eventually, each robot has an updated list of possible goals,
Li(k).

The selection of the goal to follow from this list can be done
in accordance with several criteria such as the value of the
Improvement Function, Mi(gi , k), the distance to the current
position of the robot or the distance to the neighbors. This means
that, for instance, the most profitable goal may be the one with
the highest value of Mi(q, k) or the nearest to the robot and it
is clear then that the definition of profitability of a goal depends
on the application. Therefore, the selection of the current goal
from the list can be generalized as

g∗
i (k) = arg min

gi ∈L i (k)
f(Mi(gi , k), ‖gi − pi‖, ‖gi − pj‖) (18)

where j ∈ Ni(k) and the Profitability Function f(·) represents
the profitability of a goal from the list. In particular, in this paper,
we use f(gi , k) = −Mi(gi , k). However, to give a more general
idea of this function in the simulation section, we provide a
comparison of several different alternatives.

Finally, in Algorithm 2, we summarize this method to search
for goals.

D. Local, Gradient-Based Control

The motion toward the goal aims to direct the robot to poorly
covered areas that maximize the improvement of the cover-
age. However, the path to the goal may go through well- or
overcovered areas, that can deteriorate the overall performance.
To avoid it and move across areas where the coverage level is

Algorithm 2 Selection of Goals
Require:

– Previous list of goals, Li(k − 1).
– Voronoi region of the robot, Vi(k).
– Improvement Function, Mi(q, k) ∀q ∈ Vi(k).

1: Li(k) = Li(k − 1)
2: For all gi ∈ Li(k − 1)
3: If gi is not feasible, (12),
4: Remove gi from Li(k).
5: Define search region Ri(k), (13).
6: While Ri(k)
= ∅ and ∃p ∈ Ri(k) |Mi(p, k) > 0
7: Search for a new possible goal gi ∈ Ri(k), (15)–(16).
8: Append gi to Li(k).
9: Eliminate points near gi from Ri(k), (17).

10: Select current goal g∗
i ∈ Li(k), (18).

under the objective, we propose an additional action to maxi-
mize the improvement of the coverage in the trajectory to the
goal. For this reason, we use the gradient of the Improvement
Function with respect to the robot position

ugrad
i (k) = ∇p i

Mi

(
pi(k), k

)
=

∫

Ω i

Φ
Z∗∇p i

αi(k)A(k) dq
∫

Ω i

Φαi(k) dq

−

∫

Ω i

Φ
Z∗ − Zi(k)

Z∗ αi(k) dq
∫

Ω i

Φ∇p i
αi(k) dq

(∫

Ω i

Φαi(k) dq
)2 (19)

with

A(k) = Z∗ − dZi(k − 1) −
∑

j∈Ni (k)

αi
j (k) − 2αi(k) (20)

αi
j (k) = max

(
Zcom

j (k) − dZi(k − 1), 0
)

∀q ∈ Ωi(k). (21)

This gradient represents how the Improvement Function changes
inside the coverage area of robot i due to small variations of its
position and it gives the direction of the motion of the robot that
maximizes the increase of the improvement, i.e., the direction in
which the coverage would be most improved. A more detailed
formulation of how this gradient is obtained can be found in
Appendix G.

The use of this kind of gradient descent solution is usually
applied to centralized systems [26]. Fortunately, our distributed
estimation algorithm of Section III allows us to use the same
gradient-based controller as a centralized system to obtain the
same solution because each robot has an accurate estimation of
the global map in the area required for the computation of the
gradient.

Proposition V.1: The response of the gradient-based motion
controller from (19) is the same for our distributed system as
for a centralized system with

B(k) = Z∗ − dZ(k − 1) −
∑

j∈{1,...,N }
αj (k) − αi(k) (22)

instead of A(k) and Z(k) instead of Zi(k).

PALACIOS-GASÓS et al.: DISTRIBUTED COVERAGE ESTIMATION AND CONTROL FOR MULTIROBOT PERSISTENT TASKS 1451

Proof: In the first place, we demonstrate that∑
j∈Ni (k) αj (k) =

∑
j∈Ni (k) αi

j (k) ∀q ∈ Ωi(k). According
to the definition of the map-to-communicate from (2),
αj (k) = Zcom

j (k) − dZj (k − 1). Inside Ωi(k) ∩ Ωr
j (k),

Theorem IV.4 states that Zj (k) = Z(k) = Zi(k). Then

αi
j (k) = Zcom

j (k) − dZi(k − 1)

= αj (k) ∀q ∈ Ωi(k) ∩ Ωr
j (k).

In Ωi(k) \ Ωz
j (k), according to Theorem IV.7, Zj (k − 1)

≤ Z(k − 1) = Zi(k − 1). Then, we have Zcom
j (k) − dZi(k

− 1) ≤ 0 that implies αi
j (k) = 0 = αj (k), completing the first

part of the proof.
If we now introduce this result in (22) we have

B(k) = Z∗ − dZ(k − 1) −
∑

j∈Ni (k)

αi
j (k)

−
∑

j /∈Ni (k)

αj (k) − αi(k).

Since the integrals in (19) are only computed inside Ωi(k) and
in this region αj (k) = 0 ∀ j /∈ Ni(k), j
= i, then we have∑

j /∈Ni (k) αj (k) = αi(k). Therefore

B(k) = Z∗ − dZ(k − 1) −
∑

j∈Ni (k)

αi
j (k) − 2αi(k) = A(k).

Recalling that in Ωi(k), Theorem IV.4 proves that Zi(k)
= Z(k) since Ωi(k) ⊂ Ωr

i (k), the proof is complete. �
This proposition demonstrates that with our proposal any

robot can calculate its own action using only local information
and obtain the same results as a centralized system.

E. Motion Control Law

The overall motion control law that we propose gathers both
previous actions, the local, gradient-based, ugrad

i (k), and the
goal-oriented, ugoal

i (k):

ui(k) = WL (k)umax
i (k)

WL (k)ugrad
i (k) + WG (k)ugoal

i (k)

‖WL (k)ugrad
i (k) + WG (k)ugoal

i (k)‖
(23)

where umax
i (k) is bounded by Lemma IV.3 or by umax and

ugrad
i (k) and ugoal

i (k) are the normalized directions introduced
in (19) and (11), respectively. The weight WL (k) of the gradient-
based action is also used as a gain of the maximum velocity of
the robot and is defined according to the Improvement Function
from (10)

WL (k) = 1 − max
(
Mi

(
pi(k), k

)
, 0

)

where 0 ≤ WL (k) ≤ 1. To avoid revisiting areas already well
covered, the importance of the gradient action tends to 1 when
the coverage level is near to the objective in the coverage area
of the robot. When the coverage level is poor, the local direc-
tion becomes less important since coverage is still needed. This
weight also acts as a velocity gain. When the area has a low
coverage level, it has the effect of slowing the robot down to
keep covering it and of speeding it up to quickly move to less
covered areas when its coverage level is near the objective.

The importance of the goal-oriented action is

WG (k) = Mi

(
gi(k), k

)

where 0 ≤ WG (k) ≤ 1 and gi(k) is the goal of robot i, de-
scribed in the Section V-C. This weight increases the importance
of the goal when the coverage area of the robot virtually located
there is poorly covered and, vice versa, the goal becomes less
important when it is well covered.

F. Additional Considerations

We devote this final part to present several aspects of the
motion control and the persistent coverage approach that are
worth mentioning.

First, there is no guarantee that the trajectories obtained with
the proposed motion control law are optimal and, therefore,
the coverage strategy may also be suboptimal. However, in the
simulations sections, we evaluate the performance of the system
and show the kindness of our approach.

In the second place, it is known that gradient methods may
lead to local optima and, therefore, the robots could end up stuck
in one of these minima. However, there are several features of
our approach that prevent this situation, as follow:

1) we follow goals as well as the gradient and include the
variable weights in the motion control law (23);

2) the coverage level outside the coverage area of the robots
decreases when it is not covered and, even if a robot
reaches a local minimum, the area around it will decay
and will require the robot to cover it;

3) if both weighted actions cancel out, the robot does not
move but keeps covering, making the weight of the gradi-
ent WG change and, thus, breaking the equality.

This does not imply that all the points are theoretically guar-
anteed to reach the objective even though it should happen in
practice.

Additionally, although the control law does not guarantee
collision-free motion, the Voronoi partition prevents collisions,
as mentioned earlier. Also, state-of-the-art collision avoidance
methods such as potential fields can be incorporated into the
system and used if the gradient term dominates the motion.

Finally, the discrete-time formulation of the problem requires
the frequency of the estimation to be sufficiently high w.r.t.
the maximum velocity and the coverage radius of the robots
to avoid discretization problems. Since the actual production
is continuous, the estimation must be run fast enough not to
miss sensible information between two consecutive estimation
instants. The goal selection and motion control do not need to
be run as fast as the estimation. In fact, there must be a tradeoff
between the quality of the solution and the computational cost
in the sense that the more frequent the calculation is carried
out, the better the final coverage is obtained but the higher
computational cost is incurred. Regarding the order, the goal
selection and motion step should follow the estimation step in
order to calculate the actions with the latest information.

VI. SIMULATIONS

Eventually, we present simulation results for the proposed
solution to the persistent coverage problem. At the beginning,
we show the behavior of the entire system using an illustrative
example. Afterward, we provide an exhaustive evaluation of

1452 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 6, DECEMBER 2016

Fig. 3. Example of simulation: coverage map with the coverage areas of the robots (magenta circumferences) and their motion control actions for three different
instants. Red lines represent the goal-oriented term, WG (k)ugoal

i (k), magnified by 2.5 and point to the goals that are represent by red asterisks. Green lines

represent the gradient-based term, WL (k)ugrad
i (k), magnified by 2.5. The resulting action is represented in white. Green circumferences in (b) represent the

zero-error areas of the robots and the thickest white lines, the Voronoi partition of the environment.

the local map updating strategy, the proposed alternatives to
the Profitability Function, the control of the motion of the robots
and the whole approach to the problem using a Monte Carlo
analysis.

The reference settings that we have used in these simula-
tions are the following. The environment Q is a rectangle of
100 × 150 units with a decay rate d = 0.995 and the desired
coverage level is Z∗ = 100 for every point. The team consists
of N = 6 robots, whose maximum motion is umax = 5. The
production function is equal to

αi(k) =
P

rcov
i

2 (r − rcov
i)2 , if r = ‖pi(k) − q‖ ≤ rcov

i

and αi(k) = 0, otherwise. The maximum value is P = 25 and
the coverage radius, rcov

i = 10 units. The communication radius
is rcom = 120, that clearly satisfies Assumption III.1. Note that
in a real-world environment, these parameters are fixed by the
application and by the specific robots used. Thus, for the sim-
ulation, the selection is arbitrary. In particular, we select the
number of robots that is able to produce more coverage than the
total decay of the environment when it is at the desired level,
i.e., we use the minimum number of robots that satisfy

∫

Q

∑

i∈{1,...,N }
αi(k)dq >

∫

Q
(1 − d)Z∗dq.

Although this is a sufficient condition for the robots to be able
to reach the desired coverage level, it is not a requirement of
the algorithm. If less robots were deployed, they would try to
keep the average coverage level as high as possible. Also note
that, without loss of generality, we use the same coverage radius
and the same coverage function for all the robots although they
could be different [26] without modifying the global behavior of
the system. In addition, we define the quadratic coverage error

ε̃(k) =
∫

Q

(
Z∗ − Z(k)

)2 dq

that is an interesting metric to evaluate the performance.
The simulations are implemented in MATLAB, run on a lap-

top with an Intel Core i7 and the average iteration time for these
settings is around 80 ms.

Fig. 4. Evolution of the weights of the actions WL and WG for one of the
robots.

A. Illustrative Example

This section presents an illustrative example of the simula-
tions with the reference settings. In Fig. 3, we depict the cover-
age map with the coverage areas of the robots and their motion
control actions (23) for three different instants. The average cov-
erage level reached is 96.4 with a standard deviation of 21.3 that
is, at most, 30 in the transient state. This supports that, although
it is not theoretically guaranteed, most of the points reach the
desired level at some time and also an average level near the
objective is maintained over time.

Fig. 3(a) shows that, in the beginning, there is almost no
movement since the environment is uncovered and the weight
WL , that is the velocity gain, is small. At this time, the goal-
oriented term, WG (k)ugoal

i (k), prevails. When the environment
starts to be covered, the combination of both terms drives the
robots [see Fig. 3(b)]. In the end, when all the environment is
covered, the term that has more influence is the gradient-based,
WL (k)ugrad

i (k), since there are few uncovered areas that are
worth visiting [see Fig. 3(c)]. In Fig. 4, the weight of each
action is depicted for one of the robots. It confirms that the
goal-oriented term is more important in the transient, while it
is the gradient in the steady state and that the velocity gain WL

progressively increases with the coverage.
The trajectories for the first 200 instants of this simulation

are shown in Fig. 5. At start, the robots focus on their particular
regions for three reasons:

1) they follow the goals from the initial list, that belong
to the same region and all are poorly covered;

2) the goal term is more important in the control law; and
3) they move slowly since the velocity gain, WL (k), is small

due to the low coverage of the environment.
As the algorithm proceed, the gradient term dominates the

motion and the velocity is higher making the covered regions of
the robots overlap more and more. It is worth mentioning that

PALACIOS-GASÓS et al.: DISTRIBUTED COVERAGE ESTIMATION AND CONTROL FOR MULTIROBOT PERSISTENT TASKS 1453

Fig. 5. Trajectories followed by the six robots during the first 200 iterations.
Initial positions are represented with stars and final positions with squares.

Fig. 6. Evolution of the maximum estimation error of the network.

for these settings, and in particular for this number of robots
and communication radius, the network did not become discon-
nected in any of the carried-out simulations.

In Theorem IV.7, we state that the estimation error is bounded
by (9). If we calculate the maximum estimation error of the net-
work for this example, the maximum value reached is 25.1, as
can be seen in Fig. 6. This error is lower than the value of our
upper bound that is 740.7. Although the theoretical bound is
loose, it shows that the estimation error does not go to infinity
and remains bounded. In practice, it can be seen that the esti-
mation error is much lower and that the algorithm works even
better than theoretically predicted. The minimum value of the
estimation error is always 0 which also confirm the lower bound
in (9).

Now, we focus in the characterization of the estimation. In
Theorem IV.4, we state that the estimation is perfect inside the
reachable area of each robot when the motion action satisfies (8)
and in Theorem IV.6, the area in which there is no estimation
error when no restriction is applied to the motion.

To check that these statements hold, we use the minimum
distance to an estimation error between all the robots (MDE).
This distance is the shortest Euclidean distance from a robot
to the points in which it has an estimation error, i.e., where
Zi(k)
= Z(k)

MDE(k) = min
i,q

(
‖q − pi‖ |Zi(q, k)
= Z(q, k)

)
.

In Fig. 7, we depict the MDE in each iteration. When the
motion satisfies (8) [see Fig. 7(a)], the MDE is always greater
than the radius of the reachable area (red line) and, thus, comply
with Theorem IV.4. It is also greater than the radius of the zero-
error area (green dash-dotted line) that has a constant value.
On the other hand, when there is no restriction to the motion,
Fig. 7(b) shows that MDE is greater than r∗z = 85 (red line) as
asserted in Theorem IV.6. In fact, although it is not theoretically
guaranteed, it can be seen that most of the time the estimation
is correct in an area with the same radius as the zero-error area,
i.e., MDE greater than 110, and even in a bigger region. This is
an advantage since the velocity restriction from (8) cannot be

Fig. 7. Evolution of the MDE. (a) Motion satisfies Equation (8). (b) No
restriction to the motion.

Fig. 8. Movement of a robot. The blue line represents the desired movement
of the robot and the red line, the maximum movement allowed by Lemma IV.3.

calculated in a distributed scenario and allows us to omit it in
a real-world application. Note that the MDE is not depicted in
the iterations in which all the robots have a perfect estimation.

If we test the restriction in terms of the motion of the robots,
this example shows that, in practice, it is not very limiting.
Fig. 8 shows the maximum allowed movement in the calculated
direction at each iteration for a robot. It can be seen that the
desired movement is under the maximum allowed in most cases.

B. Local Estimation of the Coverage

In order to perform a thorough validation, all the analyses
that we present in the following sections have been developed
through a Monte Carlo analysis. This analysis includes 20 runs
of the simulations from 20 different initial positions.

First, we study the influence of the parameters of the system in
our local map updating strategy from Algorithm 1. In particular,
we evaluate the influence of varying the decay, d, the number
of robots, N , the communication radius, rcom, the maximum
value of the production, P , and the coverage radius, rcov, with
respect to the reference settings. To do so, we synthesize the
two measurements introduced in the example: we calculate the
maximum estimation error and the minimum MDE over all the
runs and average both over time. We call them εmax and MDE,
respectively. In Table I, the results of this study are summarized
and the conclusions from them are as follows:

1) The variation of the decay has a small influence on εmax .
This error is around the value of P which means two
things: few overlaps take place outside the zero-error area
of the robot and the production of the non-neighbors need

1454 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 6, DECEMBER 2016

TABLE I
MAXIMUM ESTIMATION ERROR, εm ax , AND MINIMUM DISTANCE TO AN

ESTIMATION ERROR, MDE.

d 0.991 0.993 0.995 0.997
εm a x 25.3 25.4 25.8 26.2
MDE 111.3 111.2 111.2 111.3

N 4 6 8 12 16
εm a x 25.2 25.8 26.3 29.5 31.8
MDE 112.6 111.2 110.8 110.5 110.4

rcom 80 100 120 140 160
εm a x 42.6 32.7 25.8 22.4 4.1
MDE 70.5 90.8 111.2 132.4 153.8

P 15 20 25 30 35
εm a x 15.1 20.3 25.8 31.7 36.6
MDE 111.2 111.3 111.2 111.1 111.2

rcov 5 10 15 20
εm a x 25.1 25.8 28.0 31.4
MDE 116.6 111.2 106.1 101.1

Fig. 9. Evolution of the estimation with the communication radius.

only one instant to reach the robot. In these conditions,
the decay does not play an important role. In addition, the
decay does not influence the MDE since it only modifies
the coverage level. Further tests showed that both con-
clusions are valid for even larger variations of the decay
rate.

2) An increase in the number of robots makes εmax increase
because the number of overlappings rises. On the con-
trary, it makes the MDE decrease because it is more likely
that a robot appears on the limit of the zero-error area.
Nevertheless, the influence of this parameter is small in
both measurements.

3) The communication radius is the parameter with the
biggest influence in the estimation. For this reason,
we represent the evolution of the two measurements
in Fig. 9. It can be seen that εmax decreases when the
communication radius increases. This happens because
a larger radius implies that more robots are in direct
communication, reducing the error drastically. On the
contrary, the MDE increases with the communication
radius, since the production of the robots that are in direct
communication does not induce an estimation error.

4) The influence of the maximum production is very impor-
tant since it directly modifies the estimation error. How-
ever, as well as the decay, it has no effect in the distance
to the error.

5) The coverage radius makes εmax increase since the bigger
the radius is, the more overlappings occur. The MDE de-
creases with this radius. If two robots are not neighbors, a

Fig. 10. Average standard deviation of the coverage level for the different
Profitability Functions and additional selection methods.

larger coverage radius makes the MDE that they produce
on each other shorter.

Although it cannot be shown graphically for all the trials, it
should be noted that both the boundedness of the estimation
error and the correct estimation in the characterized areas held
at all times for all the simulations that we have carried out.

C. Profitability Function

As mentioned in Section V-C, the Profitability Function, f(·),
that allows the selection of the current goal from the list can be
defined in a different manner depending on the application. In
this section, we compare several different alternatives to see the
influence that they have in the global behavior of the system. The
first one selects the point with the best value of the Improvement
Function, f1(g, k) = −Mi(g, k). The second one is based on
the minimum distance to the objectives, in which we want to
reduce the overall motion, f2(g, k) = ‖g − pi(k)‖. In the third
place, we weight the previous two, varying the importance of
the Improvement Function and the distance

f3(g, k) = −0.7Mi

(
g, k

)
+ 0.3 ‖g − pi(k)‖

f4(g, k) = −0.5Mi

(
g, k

)
+ 0.5 ‖g − pi(k)‖

f5(g, k) = −0.3Mi

(
g, k

)
+ 0.7 ‖g − pi(k)‖.

We also include in the comparison other selection methods that
may not work properly, to have a better idea of the performance
of all of them. The sixth alternative is to select the goal with
the lowest value of the Improvement Function, i.e., the point of
the list that causes the smallest improvement of the coverage,
f6(g, k) = Mi(g, k). Additionally, we use a random selection
of the goal from the list and we refer to it as f7(g, k). Finally,
we also compare these methods with a random selection of the
goal in the Voronoi region of the robot. Instead of constructing
a list of goals, we directly select a random point of the region
as the goal to follow. We refer to this as f8(g, k).

From the simulations of these eight alternatives with the ref-
erence settings, we obtained the following results. First, we find
that the standard deviation of the coverage level averaged over
the runs is very significant to compare the options as can be
seen in Fig. 10. The average coverage level is the same in all
the cases since the production of the robot does not change,
but the standard deviation gives an idea of how homogeneous
is the coverage of the environment. The figure shows that the
lowest deviation is achieved with f1 , f3 , f4 , and f5 , i.e., with
the Profitability Functions that look for the goal with the maxi-
mum value of the improvement. These selections lead to a more

PALACIOS-GASÓS et al.: DISTRIBUTED COVERAGE ESTIMATION AND CONTROL FOR MULTIROBOT PERSISTENT TASKS 1455

Fig. 11. Evolution of the weights for the different Profitability Functions.

homogeneous coverage of the environment than the others in
the transient state.

The Profitability Functions that look for the worst covered
areas select goals that produce high values of WG and not only
direct the robots to the most profitable areas but also give more
importance to the goal-oriented term in the control law. On the
contrary, if the improvement of the selected goals is really low,
as for f6 or f8 , WG tends to zero. In that case, the gradient term
dominates the motion and the results tend to be similar to the
ones obtained only with the gradient term. This is the reason why
the performance differences between so different Profitability
Functions are not larger and why all of them converge to the
same standard deviation in the steady state, because eventually
the gradient term dominates the motion.

Fig. 11 shows the average weights for the eight Profitability
Functions. It can be seen in Fig. 11(a) that the gradient weight
is very similar for all of them except for those based upon the
Improvement Function in the first 100 iterations. In the end, the
weight of the gradient is almost 1 in all cases, supporting that
all the alternatives converge to the same value of the standard
deviation. However, the most important result is the influence
of the Profitability Function in WG , shown in Fig. 11(b). The
chosen function clearly determines which term is more impor-
tant in the control action in the transient: the goal-oriented term
dominates in the beginning for f1 , f3 , f4 , and f5 but for f6 , the
gradient rules the motion from the start. This is the reason why
f1 or f3 give much better results than the other alternatives in
the transient state.

Additionally, Fig. 11(a) gives an idea of the distances traveled
by the robots since WL acts as a velocity and the total traveled
distance is proportional to the integral of WL over time. Intu-
itively, f2 should lead to the shortest distance but in practice it
does not because the nearest goals may not be the most profitable
and then the robots move faster and travel more distance.

Fig. 12. Relative quadratic coverage error with respect to f1 for the different
Profitability Functions and additional selection methods.

TABLE II
RELATIVE COVERAGE ERROR WITH RESPECT TO f1 AVERAGED OVER TIME

f1 f2 f3 f4 f5 f6 f7 f8

0% 10.1% 0.5% 1.7% 3.1% 9.2% 8.0% 9.1%

Fig. 13. Average standard deviation of the coverage level for the different
motion control laws.

Finally, we compare the performance of the alternatives using
the quadratic coverage error of the system, ε̃(k). Upon this
metric, we compute the relative coverage error as the quadratic
coverage error of each alternative relative to the best one. In
this case, we calculate

(
ε̃(k) − ε̃f1 (k)

)
/ε̃f1 (k), where ε̃f1 (k)

is the quadratic coverage error obtained with f1 , so as to obtain
a representative measure in percentage for each alternative (see
Fig. 12). It shows that the Profitability Functions that are not
built upon the Improvement Function perform up to 20% worse.

If we average these relative errors over time (see Table II),
we can have a single measure of the differences that the se-
lection methods cause on the performance of the system. The
conclusion from these results is that, although the Profitabil-
ity Function is important conceptually, using a criterion that is
based on the maximum Improvement Function of the coverage,
such as f1 or f3 , leads to a coverage around a 10% better than
using any other selection that does not take it into account.

D. Motion Control

In the third place, we provide results regarding the control
of the motion of the robots. To evaluate the influence of the
restriction from (8) in terms of the motion of the robots, we
ran a Monte Carlo simulation with the reference settings and
concluded that, in practice, this restriction in the motion is not
very limiting. In 20 runs of 600 iterations, it was only applied
in the 6.4% of the cases and caused an average reduction of the
motion of the 54.0%.

Next, we compare our motion control law with the perfor-
mance of the gradient-term and the goal-oriented term, sep-
arately. In Fig. 13, it can be seen that the average standard

1456 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 6, DECEMBER 2016

Fig. 14. Relative quadratic coverage error with respect to (23) for the different
motion control laws.

TABLE III
RELATIVE COVERAGE ERROR WITH RESPECT TO (23) AVERAGED OVER TIME

Gradient and Goals Gradient Goals

0% 7.5% 73.4%

deviation of the coverage level is greater when only one of
the terms of the control law is used. This means that our motion
control law produces a more homogeneous coverage in the envi-
ronment. It is also remarkable that, in the steady state, the control
using only the goal-oriented term has a much higher deviation.
This happens when the environment is already well covered
because the straight path to the objective produces overcovered
regions. On the contrary, the behavior of the gradient-term sepa-
rately is very similar to the entire law because this term prevails
over the goal oriented.

We also represent the quadratic coverage error of each term
separately relative to the quadratic coverage error obtained with
our motion control law,

(
ε̃(k) − ε̃ui

(k)
)
/ε̃ui

(k), in Fig. 14. It
shows that the goal-oriented term alone also produces a great
increment of the coverage error at the end of the simulations
while the gradient term does not.

Table III demonstrates that, on average, the coverage with our
motion control law performs 7.5% better than only the gradient-
based term and 73.4% better than only the goal-oriented term.

E. Global Performance Analysis

In this final part, we provide simulation results on the perfor-
mance of our entire approach to the persistent coverage problem,
which comprises of the estimation algorithm and the motion
control. Specifically, we study the influence of the parameters
of the system in the quadratic coverage error of the steady state,
calculated for k = 600, and in the standard deviation of the
coverage level.

In Fig. 15, we present the evolution of the quadratic cover-
age error of the steady state averaged over the runs for different
values of the parameters. It can be seen that, in terms of this cov-
erage error, there is an optimum value for each parameter when
all the others are fixed and, when a different value is applied, the
coverage error of the steady state is higher. The reason is that
higher values of the parameters increase the production of the
system or decrease the deterioration of the coverage, leading to
a coverage level of the environment greater than the objective.
Similarly, lower values lead to an undercovered environment.
In both cases, the quadratic coverage error is higher than in a
well-covered environment according to its definition.

Fig. 15. Evolution of the average quadratic coverage error of the steady state
for different values of the parameters. (a) d = 0.991, 0.993, 0.995, 0.997.
(b) N = 4, 6, 8, 12, 16. (c) P = 15, 20, 25, 30, 35. (d) rcov = 5, 10, 15, 20.

TABLE IV
AVERAGE COVERAGE LEVEL OF THE STEADY STATE

d 0.991 0.993 0.995 0.997
Z 56.9 72.0 96.4 140.5

N 4 6 8 12 16
Z 65.1 96.4 127.8 190.7 253.6

P 15 20 25 30 35
Z 58.6 77.5 96.4 115.4 134.6

rcov 5 10 15 20
Z 25.0 96.4 212.1 368.4

These results are supported by the specific values of the av-
erage coverage level of the steady state, gathered in Table IV.
Since the robots are capable of increasing the coverage level,
the average level of the environment increases with the number
of robots, the maximum value of the production, P , and the
coverage radius. Moreover, since higher values of the d pro-
duce lower decreases on the coverage level, the evolution with
respect to this parameter is the same. An uncertainty on the value
of the decay might lead to under or overcovering the points of
the environment. In particular, it would lead to a certain value
in Fig. 15(a) different from the actual value.

Note that we do not show the evolution with the communica-
tion radius since it is negligible. This happens due to the size of
the Voronoi region with respect to the zero-error area and to the
selection of the goals near the robot, as can be seen in Fig. 3(b).

We also evaluate the influence of all the parameters in the
standard deviation of the coverage level. Fig. 16 shows the
average standard deviation for each value of the parameters.
We can draw the following conclusions:

1) Low values of the decay present a similar behavior, espe-
cially in the steady state. Only the greatest value shows
a greater standard deviation for the transient and the sta-
tionary [see Fig. 16(a)].

2) The influence of the number of robot in the transient is
rather complex [see Fig. 16(b)]. However, in the end, the
more robots are used, the higher the standard deviation.

3) An increase in the maximum production makes the stan-
dard deviation of the coverage level also increase, since
the increment of the coverage level at each time is higher

PALACIOS-GASÓS et al.: DISTRIBUTED COVERAGE ESTIMATION AND CONTROL FOR MULTIROBOT PERSISTENT TASKS 1457

Fig. 16. Evolution of the average standard deviation of the coverage level for
different values of the parameters. (a) d = 0.991, 0.993, 0.995, 0.997. (b) N =
4, 6, 8, 12, 16. (c) P = 15, 20, 25, 30, 35. (d) rcov = 5, 10, 15, 20.

and, therefore, the value of the most covered points with
respect to the least covered ones [see Fig. 16(c)].

4) The deviation of the coverage level responds to the vari-
ation of the coverage radius in the same way as to P
[see Fig. 16(d)] and this parameter is again the one that
produces the greatest variation.

Although, in most cases, the lowest value of each parameter
leads to the lowest deviation, it is essential that the environment
reaches the objective and, thus, the average coverage level of the
environment from Table IV must be taken into account. It can
be seen that the coverage level increases with all the parameters
and that the optimal value according to this criterion is the same
as for the coverage error.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a distributed approach to the
persistent coverage problem with a group of mobile robots. We
have formulated the problem in discrete time to deal with the
discrete nature of the communications in a distributed system.
We have presented an algorithm to obtain an estimation of the
global coverage map with only local information received from
neighboring robots. This algorithm has proven to be accurate

when calculating the estimation. We have introduced a motion
control law that drives the robots to poorly covered areas while
moving in the direction of the maximum improvement. The first
part is achieved by following goals that are selected inside the
Voronoi regions to avoid conflicts between robots. The second
part is achieved using the local gradient of the Improvement
Function. Finally, we have carried out different simulations to
validate the proposed contributions and to evaluate the perfor-
mance of the system.

APPENDIX A
PROOF OF LEMMA IV.1

In this proof, all the areas refer to time k unless it is ex-
plicitly stated, for instance, Ωz

i ≡ Ωz
i (k) and also Ni ≡ Ni(k).

In the first place, we prove the upper bound of the estimation.
Following the principle of induction:

1) Consider Zi(0) ≤ Z(0) from Assumption III.2.
2) Assume as an induction hypothesis that Zi(k − 1)

≤ Z(k − 1), ∀q ∈ Q, i ∈ {1, . . . , N}.
3) We split the environment into two areas in accordance to

the estimation algorithm. If a point q ∈ Ωi , the update from (2),
(3a), (5) and Assumption III.1 is

Zi(k) = dZi(k − 1) + αi(k)

+
∑

j∈Ni

max
(
dZj (k − 1) + αj (k) − dZi(k − 1), 0

)

where, according to the hypothesis of this lemma (7) and the
induction hypothesis

0 ≤ max
(
dZj (k − 1) + αj (k) − dZi(k − 1), 0

)
≤ αj (k).

Therefore, we have

Zi(k) ≤ dZi(k − 1) + αi(k) +
∑

j∈Ni

αj (k) ≤ Z(k).

In the second area, i.e., if q /∈ Ωi , the update from (2), (3b),
and (5) is

Zi(k) = max
j∈Ni

(
dZi(k − 1), dZj (k − 1) + αj (k)

)

− max
j∈Ni

βj (k) +
∑

j∈Ni

βj (k) (24)

where the first term

max
j∈Ni

(
dZi(k − 1), dZj (k − 1) + αj (k)

)

≤ dZ(k − 1) + max
j∈Ni

αj (k).

If such q ∈ Ωo
j , that is, βj (k) > 0, then maxj∈Ni

αj (k)
= maxj∈Ni

βj (k),
∑

j∈Ni
βj (k) =

∑
j∈Ni

αj (k) and (24)
becomes

Zi(k) ≤ dZ(k − 1) +
∑

j∈Ni

αj (k) ≤ Z(k). (25)

Finally, if such q /∈ Ωo
j , there exists no βj (k), (24) becomes

Zi(k) ≤ dZ(k − 1) + max
j∈Ni

αj (k) ≤ Z(k)

and the first result is proven.

1458 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 6, DECEMBER 2016

For the second result of this lemma an analogous demonstra-
tion can be developed splitting the environment into Ωi and the
rest of the zero-error area, Ωz

i \ Ωi , particularizing each region
for q ∈ Ωj and q /∈ Ωj , and applying the hypothesis and the
first result of this lemma. �

APPENDIX B
PROOF OF LEMMA IV.2

Let q ∈ Q be a point such that, for at least one robot, j1 ,
αj1 (k − N + 1) > 0. In such case q ∈ Ωr

j1
(k − N), by as-

sumption of this lemma Zj1 (k − N) = Z(k − N) and from
Lemma IV.1, Zj1 (k − N + 1) = Z(k − N + 1). In the fol-
lowing iterations, according to the property of the estimation
from (6), it is clear that

Zj1 (k − N + 1 + �) ≥ d�−1Z(k − N + 1)

= d�Z(k − N) + d�−1α(k − N + 1) (26)

with � ∈ {1, . . . , N − 1}, implying that any possible error in the
estimation of j1 is not due to the productions at time k − N + 1.

In the next iteration, k − N + 2, for any neighbor of j1 , say
j2 , it can happen that q ∈ Ωr

j2
(k − N + 1) or not. If q /∈ Ωj2

(k − N + 2), from (3b) and (5)

Zj2 (k − N + 2)

= max
m 2

(dZj2 (k − N + 1), Zcom
m 2

(k − N + 2))

+
∑

m 2

βm 2 (k − N + 2) − max
m 2

(
βm 2 (k − N + 2)

)

≥ dZj1 (k − N + 1) ≥ d2Z(k − N) + dα(k − N + 1)

with m2 ∈ Nj2 (k − N + 2). On the other hand, if q ∈ Ωj2 (k
− N + 2), the update from (3a) and (5) results in

Zj2 (k − N + 2)

≥ dZj2 (k − N + 1) + αj2 (k − N + 2)

+ max
(
dZj1 (k − N + 1) + αj1 (k − N + 2)

− dZj2 (k − N + 1), 0
)

≥ dZj1 (k − N + 1) ≥ d2Z(k − N) + dα(k − N + 1).

Thus, j2 has no estimation error at time k − N + 2 caused
by α(k − N + 1). Additionally, using the same argument as
in (26), it is clear that any error in j2 in the following iterations
is not due to α(k − N + 1).

A similar reasoning can be developed at time k − N + 3
for neighbors of j1 or j2 and, consequently, in at most N − 1
iterations, the same result can be obtained for all the robots
of the network. Therefore, the estimation of any robot of the
network at time k includes at least the productions of the robots
at time k − (N − 1) and the proof is complete. �

APPENDIX C
PROOF OF LEMMA IV.3

Since ρi(k) is the minimum distance from the current position
of robot i to any of the last N − 1 positions of other robots j
that are not neighbors of i at iteration k, then αj (�) = 0 for all
q ∈ Ωρ

i (k) and � = {k − N + 1, . . . , k}.
Therefore, we need to demonstrate that Ωr

i (k) ⊆ Ωρ
i (k). This

happens if the radius of Ωr
i (k) is smaller than the radius of

Ωρ
i (k), that is, rcom − rcov

max + umax
i (k) ≤ ρi(k) − rcov

max , which
is true if (8) holds. �

APPENDIX D
PROOF OF THEOREM IV.4

Following the principle of induction:
1) Consider Zi(0) = Z(0) from Assumption III.2.
2) Assume as an induction hypothesis that Zi(k − 1)

= Z(k − 1) ∀q ∈ Ωr
i (k − 1).

3) Using Lemma IV.1 and the induction hypothesis, we have
Zi(k) = Z(k) in Ωz

i (k). Then, for those areas of Ωr
i (k) that

intersect with Ωz
i (k), the result is proven.

We now focus on demonstrating that the same holds for any
point q ∈ Ωr

i (k) \ Ωz
i (k). Lemma IV.2 demonstrates that the

production of the robots before or at time k − N + 1 induces
no error in Zi(k) and Lemma IV.3 guarantees that αm (�) = 0 in
Ωr

i (k) for all � ∈ {k − N + 1, . . . , k}, m /∈ Ni(k). Therefore,
only the production after k − N + 1 of the current neighbors of
robot i can cause an error on Zi(k) within Ωr

i (k) \ Ωz
i (k). For

any point of this region, the updating law from (2), (3b), and (5)
is (24).

If there exists some neighbor j such that q ∈ Ωz
j (k), then

Zj (k) = Z(k) and the first term of (24) becomes dZ(k − 1)
− maxj∈Ni (k) αj (k). Since αi(k) = 0 and maxj∈Ni (k) αj (k)
= maxj∈Ni (k) βj (k), then Zi(k) = Z(k) in

(
Ωr

i (k) \
Ωz

i (k)
)
∪ Ωz

j (k).
On the other hand, if there is no neighbor j such that q ∈

Ωz
j (k), i.e., αj (k) = 0 for all j ∈ V in q, then (24) results in

Zi(k) = maxj∈Ni (k)∪i dZj (k − 1).
Repeating the same procedure for time k − 1, if q ∈

Ωz
j (k − 1) for any j ∈ {Ni(k), i}, then Zj (k − 1) = Z(k − 1)

which implies that Zi(k) = dZ(k − 1) = Z(k). If q /∈ Ωz
j (k

− 1), then we can repeat recursively until k − (N − 1). If q /∈
Ωz

j (�) with � ∈ {k − N + 1, . . . , k − 1}, then, according to
Lemma IV.2, Zi(k) = dN Z(k − N) + dN −1α

(
k − (N − 1)

)

= Z(k), completing the proof. �

APPENDIX E
PROOF OF THEOREM IV.6

According to Lemma IV.2, whose hypothesis is confirmed
by Theorem IV.4, the production of the robots from N − 1 or
more instants before does not induce an error. Therefore, it
is guaranteed that the robot does not have an estimation er-
ror in an area around it if it is not capable of reaching the
production of non-neighbors in less than N − 1 iterations. Ac-
cording to Assumption III.1, in the worst case, the produc-
tion of a non-neighbor is at a distance of rcom − rcov

max . Ad-
ditionally, a robot can move at most (N − 1)umax units in
N − 1 instants. Therefore, the radius of the area around the

PALACIOS-GASÓS et al.: DISTRIBUTED COVERAGE ESTIMATION AND CONTROL FOR MULTIROBOT PERSISTENT TASKS 1459

robot that cannot reach the previous productions of a non-
neighbor is r∗z = rcom − rcov

max − (N − 1)umax and the proof is
complete. �

APPENDIX F
PROOF OF THEOREM IV.7

The lower bound is proven in Lemma IV.1, whose hypoth-
esis is confirmed by Theorem IV.4. We prove here the upper
bound. As we mentioned, the error of the local estimation, εest

= Z(k) − Zi(k), is caused by the lack of communication be-
tween all robots of the network. In fact, the more non-neighbors
of robot i overlap between them, the higher this error is for robot
i at each time instant. Consequently, we can formulate the max-
imum error produced at a particular time instant as e = Pno

where 0 < no ≤ N − 1 is the number of overlapping robots
outside the communication area of any other robot. In the worst
case scenario, this error is repeated every time instant and added
to the previous ones that have decayed over time. Therefore, we
have εest = e + de + d2e + · · · + dδ−1e = e(1 − dδ)/(1 − d),
where δ − 1 represents the number of iterations until the robot
receives the information and its value depends on no . How-
ever, as introduced for Lemma IV.2, the maximum is N − 1 in-
stants, i.e., δ − 1 ≤ N − 1, and only the errors of the last N − 1
iterations have to be added. Thus

εest = Pno
1 − dδ

1 − d
≤ P (N − 1)

1 − dN

1 − d

and the desired result is proven. �

APPENDIX G
FORMULATION OF THE GRADIENT

In this appendix, we omit the dependencies with q for
simplicity and we use pi ≡ pi(k) and Ωi ≡ Ωi(pi). Equa-
tion (19) comes from the derivation of the Improvement Function
from (10) particularized for the position of the robot, pi(k). To
obtain (19), first we derive the quotient in (10)

∇p i
Mi(pi , k) =

∇p i
B1 · B2 − B1 · ∇p i

B2

B2
2

(27)

with

B1(k) =
∫

Ω i

Z∗ − Zi

Z∗ Φαi(k) dq, B2(k) =
∫

Ω i

Φαi(k) dq.

From the estimation algorithm in (2), (3a), and (5) and (21),
we have

Zi(k) = dZi(k − 1) + αi(k) +
∑

j∈Ni

αi
j (k) ∀q ∈ Ωi

and applying the Leibniz integral rule to the term ∇p i
B1 , we

obtain

∇p i
B1 =

∫

Ω i

Φ
Z∗∇p i

(
Z∗αi(pi)

−
(
dZi(k − 1) + αi(pi) +

∑

j∈Ni

αi
j (k)

)
αi(pi)

)
dq

=
∫

Ω i

Φ
Z∗∇p i

αi(pi)
(
Z∗ − dZi(k − 1)

−
∑

j∈Ni

αi
j (k) − 2αi(pi)

)
dq. (28)

On the other hand, we have ∇p i
B2 =

∫
Ω i

Φ∇p i
αi(pi) dq.

Introducing this equation and (28) in (27) and denoting by A(k)
the expression in (20), the gradient of the Improvement Function
results in (19). �

REFERENCES

[1] D. Mackenzie and T. Balch, “Making a clean sweep: Behavior based
vacuuming,” in Proc. AAAI Fall Symp.: Instantiating Real-world Agents,
1993, pp. 93–98.

[2] N. M. Kakalis and Y. Ventikos, “Robotic swarm concept for efficient oil
spill confrontation,” J. Hazardous Mater., vol. 154, no. 1, pp. 880–887,
2008.

[3] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation algorithms
for lawn mowing and milling,” Comput. Geom., vol. 17, no. 1, pp. 25–50,
2000.

[4] R. N. Smith, M. Schwager, S. L. Smith, B. H. Jones, D. Rus, and G. S.
Sukhatme, “Persistent ocean monitoring with underwater gliders: adapting
sampling resolution,” J. Field Robot., vol. 28, no. 5, pp. 714–741, 2011.

[5] D. A. Paley, F. Zhang, and N. E. Leonard, “Cooperative control for ocean
sampling: the glider coordinated control system,” IEEE Trans. Control
Syst. Technol., vol. 16, no. 4, pp. 735–744, Jul. 2008.

[6] N. Nigam, “The multiple unmanned air vehicle persistent surveillance
problem: A review,” Machines, vol. 2, no. 1, pp. 13–72, 2014.

[7] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. Robot. Autom., vol. 20, no. 2,
pp. 243–255, Apr. 2004.

[8] M. Schwager, D. Rus, and J. Slotine, “Decentralized, adaptive cover-
age control for networked robots,” Int. J. Robot. Res., vol. 28, no. 3,
pp. 357–375, 2009.

[9] H. W. Hamacher and Z. Drezner, Facility Location: Applications and
Theory. New York, NY, USA: Springer, 2002.

[10] I. I. Hussein and D. M. Stipanovic, “Effective coverage control for mo-
bile sensor networks with guaranteed collision avoidance,” IEEE Trans.
Control Syst. Technol., vol. 15, no. 4, pp. 642–657, Jul. 2007.

[11] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Trans. Robot., vol. 21, no. 3, pp. 376–386,
Jun. 2005.

[12] F. Pasqualetti, J. W. Durham, and F. Bullo, “Cooperative patrolling via
weighted tours: Performance analysis and distributed algorithms,” IEEE
Trans. Robot., vol. 28, no. 5, pp. 1181–1188, Oct. 2012.

[13] D. Portugal, C. Pippin, R. P. Rocha, and H. Christensen, “Finding optimal
routes for multi-robot patrolling in generic graphs,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2014, pp. 363–369.

[14] A. Marino, G. Antonelli, A. P. Aguiar, and A. Pascoal, “A new ap-
proach to multi-robot harbour patrolling: theory and experiments,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2012, pp. 1760–1765.

[15] N. Agmon, S. Kraus, and G. A. Kaminka, “Multi-robot perimeter patrol
in adversarial settings,” in Proc. IEEE Int. Conf. Robot. Autom., 2008,
pp. 2339–2345.

[16] P. F. Hokayem, D. Stipanovic, and M. W. Spong, “On persistent coverage
control,” in Proc. IEEE Conf. Dec. Control, 2007, pp. 6130–6135.

[17] C. Song, L. Liu, G. Feng, Y. Wang, and Q. Gao, “Persistent awareness
coverage control for mobile sensor networks,” Automatica, vol. 49, no. 6,
pp. 1867–1873, 2013.

1460 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 6, DECEMBER 2016

[18] C. G. Cassandras, X. Lin, and X. Ding, “An optimal control approach
to the multi-agent persistent monitoring problem,” IEEE Trans. Autom.
Control, vol. 58, no. 4, pp. 947–961, Apr. 2013.

[19] J. M. Palacios-Gasos, E. Montijano, C. Sagüés, and S. Llorente, “Multi-
robot persistent coverage using branch and bound,” in Proc. Am. Control
Conf., 2016, pp. 5697–5702.

[20] N. Nigam, S. Bieniawski, I. Kroo, and J. Vian, “Control of multiple UAVs
for persistent surveillance: Algorithm and flight test results,” IEEE Trans.
Control Syst. Technol., vol. 20, no. 5, pp. 1236–1251, Sep. 2012.

[21] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: monitor-
ing and sweeping in changing environments,” IEEE Trans. Robot., vol. 28,
no. 2, pp. 410–426, Apr. 2012.

[22] X. Lan and M. Schwager, “Planning periodic persistent monitoring tra-
jectories for sensing robots in gaussian random fields,” in Proc. IEEE Int.
Conf. Robot. Autom., 2013, pp. 2407–2412.

[23] D. E. Soltero, M. Schwager, and D. Rus, “Decentralized path planning
for coverage tasks using gradient descent adaptive control,” Int. J. Robot.
Res., vol. 33, no. 3, pp. 401–425, 2014.

[24] X. Lin and C. G. Cassandras, “An optimal control approach to the multi-
agent persistent monitoring problem in two-dimensional spaces,” in Proc.
IEEE Conf. Decis. Control, 2013, pp. 6886–6891.

[25] S. Alamdari, E. Fata, and S. L. Smith, “Persistent monitoring in discrete
environments: Minimizing the maximum weighted latency between ob-
servations,” Int. J. Robot. Res., vol. 33, no. 1, pp. 138–154, 2013.

[26] C. Franco, G. Lopez-Nicolas, C. Sagues, and S. Llorente, “Persistent cov-
erage control with variable coverage action in multi-robot environment,”
in Proc. IEEE Int. Conf. Decis. Control, 2013, pp. 6055–6060.

[27] N. Hubel, S. Hirche, A. Gusrialdi, T. Hatanaka, M. Fujita, and O. Sawodny,
“Coverage control with information decay in dynamic environments,” in
Proc. 17th IFAC World Congr., 2008, pp. 4180–4185.

[28] R. Graham and J. Cortés, “Adaptive information collection by robotic
sensor networks for spatial estimation,” IEEE Trans. Autom. Control,
vol. 57, no. 6, pp. 1404–1419, Jun. 2012.

[29] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman, “Decentralized
environmental modeling by mobile sensor networks,” IEEE Trans. Robot.,
vol. 24, no. 3, pp. 710–724, Jun. 2008.

[30] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence
properties of dynamic average consensus estimators,” in Proc. IEEE Int.
Conf. Decis. Control, 2006, pp. 398–403.

[31] S. Martı́nez, “Distributed interpolation schemes for field estimation by
mobile sensor networks,” IEEE Trans. Control Syst. Technol., vol. 18,
no. 2, pp. 491–500, Mar. 2010.

[32] K. J. Aström and R. M. Murray, Feedback Systems: An Introduction for
Scientists and Engineers. Princeton, NJ, USA: Princeton Univ. Press,
2010.

[33] J. M. Palacios-Gasos, E. Montijano, C. Sagues, and S. Llorente, “Dis-
tributed coverage estimation for multi-robot persistent tasks,” in Proc.
Eur. Control Conf., Jul. 2015, pp. 3681–3686.

[34] L. Sabattini, A. Gasparri, C. Secchi, and N. Chopra, “Enhanced connec-
tivity maintenance for multi-robot systems,” in Proc. 10th Int. IFAC Symp.
Robot Control, 2012, pp. 319–324.

[35] M. Zavlanos and G. Pappas, “Distributed connectivity control of mobile
networks,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1416–1428, Dec. 2008.

[36] M. M. Zavlanos, “Synchronous rendezvous of very-low-range wireless
agents,” in Proc. Int. Conf. Decis. Control, 2010, pp. 4740–4745.

[37] G. Hollinger and S. Singh, “Multi-robot coordination with periodic con-
nectivity,” in Proc. Int. Conf. Robot. Autom., 2010, pp. 4457–4462.

[38] N. A. Lynch, Distributed Algorithms. San Mateo, CA, USA: Morgan
Kaufmann, 1996.

[39] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[40] L. Jaillet, A. Yershova, S. La Valle, and T. Simeon, “Adaptive tuning of
the sampling domain for dynamic-domain RRTs,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robot. Syst., 2005, pp. 2851–2856.

[41] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic Net-
works: A Mathematical Approach to Motion Coordination Algorithms.
Princeton, NJ, USA: Princeton Univ. Press, 2009.

[42] L. Pimenta, V. Kumar, R. Mesquita, and G. Pereira, “Sensing and cover-
age for a network of heterogeneous robots,” in Proc. IEEE Conf. Decis.
Control, 2008, pp. 3947–3952.

[43] A. Solanas and M. Garcia, “Coordinated multi-robot exploration through
unsupervised clustering of unknown space,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst., 2004, vol. 1, pp. 717–721.

[44] N. Michael, M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed multi-
robot task assignment and formation control,” in Proc. IEEE Int. Conf.
Robot. Autom., 2008, pp. 128–133.

José Manuel Palacios-Gasós (S’16) received the
B.S. degree in industrial engineering in 2012 and
the M.S. degree in systems engineering and com-
puter science in 2014 from University of Zaragoza,
Zaragoza, Spain, where he is currently working to-
ward the Ph.D. degree with the Instituto de Investi-
gación en Ingenierı́a de Aragón, Zaragoza, Spain.

His research interests include multiagent systems,
distributed and cooperative control, and computer
vision.

Eduardo Montijano (M’12) received the M.Sc.
and Ph.D. degrees from Universidad de Zaragoza,
Zaragoza, Spain, in 2008 and 2012, respectively.

He has been a Visiting Scholar with University of
California San Diego, University of California Berke-
ley, and Boston University in the United States and
with the Royal Institute of Technology, Stockholm,
Sweden. He is currently a Professor with Centro Uni-
versitario de la Defensa, Zaragoza, Spain. His main
research interests include distributed algorithms, co-
operative control, and computer vision.

Dr. Montijano’s Ph.D. dissertation received the extraordinary award from
Universidad de Zaragoza during the 2012–2013 academic year.

Carlos Sagüés (M’00–SM’11) received the M.Sc.
and Ph.D. degrees from Universidad de Zaragoza,
Zaragoza, Spain.

During the course of the Ph.D. degree, he worked
on force and infrared sensors for robots. Since 1994,
he has been an Associate Professor and, since 2009, a
Full Professor with the Departamento de Informatica
e Ingenierı́a de Sistemas, Universidad de Zaragoza,
where he has also been a Head Teacher. His re-
search interest includes control systems, computer
vision, visual robot navigation, and multivehicle
cooperative control.

Sergio Llorente received the M.S. and Ph.D.
degrees in electronics engineering from University
of Zaragoza, Zaragoza, Spain, in 2001 and 2016, re-
spectively.

In 2001, he joined the BSH Home Appliances
Group, Zaragoza, Spain, where he has held differ-
ent positions in the Research and Development De-
partment of Induction Cooktops. He is currently in
charge of several research lines and is an Inventor
in more than 150 patents. He has also been an As-
sistant Professor with University of Zaragoza since

2004. His research interests include power electronics, simulation and control
algorithms for power electronics, and temperature control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

